本文小编为大家详细介绍“怎么使用Python+OpenCV读写视频”,内容详细,步骤清晰,细节处理妥当,希望这篇“怎么使用Python+OpenCV读写视频”文章能帮助大家解决疑惑,下面跟着小编的思路慢慢深入,一起来学习新知识吧。
通过video_capture = cv2.VideoCapture(video_path)可以获取读取视频的句柄。而后再通过flag, frame = video_capture.read()可以读取当前帧,flag表示读取是否成功,读取成功后,句柄会自动移动到下一帧的位置。读取结束后使用video_capture.release()释放句柄。
一个简单的逐帧读取的程序如下:
import cv2 video_capture = cv2.VideoCapture(video_path) while True: flag, frame = video_capture.read() if not flag: break # do something with frame video_capture.release()
为了能更好更灵活地了解并读取视频,我们有时候需要获取视频的一些信息,比如帧率,总帧数等等。获取这些信息的方法是调用video_capture.get(PROP_ID)方法,其中PROP_ID是OpenCV定义的一些常量。
常用的信息及示例如下:
import cv2 video_path = r'D:\peppa\Muddy_Puddles.mp4' video_capture = cv2.VideoCapture(video_path) frame_num = video_capture.get(cv2.CAP_PROP_FRAME_COUNT) # ==> 总帧数 fps = video_capture.get(cv2.CAP_PROP_FPS) # ==> 帧率 width = video_capture.get(cv2.CAP_PROP_FRAME_WIDTH) # ==> 视频宽度 height = video_capture.get(cv2.CAP_PROP_FRAME_HEIGHT) # ==> 视频高度 pos = video_capture.get(cv2.CAP_PROP_POS_FRAMES) # ==> 句柄位置 video_capture.set(cv2.CAP_PROP_POS_FRAMES, 1000) # ==> 设置句柄位置 pos = video_capture.get(cv2.CAP_PROP_POS_FRAMES) # ==> 此时 pos = 1000.0 video_capture.release()
句柄位置指的是下一次调用read()方法读取到的帧号,帧号索引从0开始。
从上面代码中可以看到我们使用了set方法来设置句柄的位置,这个功能在读取指定帧时很有用,这样我们不必非要使用read()遍历到指定位置。
但问题来了,这种方式读取到的内容和read()遍历读取到的内容是否完全相同?
做个简单的实验,下面用两种方法分别读取同一个视频的[100, 200)帧,然后检查读取的内容是否完全相同,结果是True。
import cv2 import numpy as np video_path = r'D:\peppa\Muddy_Puddles.mp4' video_capture = cv2.VideoCapture(video_path) cnt = -1 frames1 = [] while True: cnt += 1 flag, frame = video_capture.read() assert flag if 100 <= cnt < 200: frames1.append(frame) if cnt >= 200: break video_capture.release() video_capture = cv2.VideoCapture(video_path) frames2 = [] for i in range(100, 200): video_capture.set(cv2.CAP_PROP_POS_FRAMES, i) flag, frame = video_capture.read() assert flag frames2.append(frame) video_capture.release() frames1 = np.array(frames1) frames2 = np.array(frames2) print(np.all(frames1 == frames2)) # ==> check whether frames1 is same as frames2, result is True
接下来看看利用set读取的效率。还是利用小猪佩奇第一集做实验,这个视频共7788帧,下面分别用两种方法遍历读取视频中所有帧。第二种方法明显比第一种慢得多,所以这就很苦逼了。。。如果帧间隔比较小的话,单纯用read()进行遍历效率高;如果帧间隔比较大的话,用set()设置位置,然后read()读取效率高。
(如果给第二种方法加个判断,每隔n帧读取一次,那么效率确实会提高n倍,可以自行尝试)
import cv2 import numpy as np import time video_path = r'D:\peppa\Muddy_Puddles.mp4' video_capture = cv2.VideoCapture(video_path) t0 = time.time() while True: flag, frame = video_capture.read() if not flag: break t1 = time.time() video_capture.release() video_capture = cv2.VideoCapture(video_path) t2 = time.time() frame_num = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) for i in range(frame_num): video_capture.set(cv2.CAP_PROP_POS_FRAMES, i) flag, frame = video_capture.read() assert flag t3 = time.time() video_capture.release() print(t1 - t0) # ==> 76.3 s print(t3 - t2) # ==> 345.1 s
上面我们使用了两种方法读取视频帧,第一种是使用read()进行暴力遍历,第二种是使用set()设置帧号,再使用read()读取。两种方法读取到的结果完全一样,但是效率在不同的情况下各有优势,所以为了最大化发挥两者的优势,在写读取帧函数时,就要把两种方式都写进去,由参数来决定使用哪种模式,这样用户可以针对电脑的硬件做一些简单实验后自行决定。
# -*- coding: utf-8 -*- import os import cv2 def _extract_frame_mode_1(video_capture, frame_list, root_folder, ext='png'): """ extract video frames and save them to disk. this method will go through all the frames using video_capture.read() Parameters: ----------- video_capture: obtained by cv2.VideoCapture() frame_list: list list of frame numbers root_folder: str root folder to save frames ext: str extension of filename """ frame_list = sorted(frame_list) video_capture.set(cv2.CAP_PROP_POS_FRAMES, 0) cnt = -1 index = 0 while True: cnt += 1 flag, frame = video_capture.read() if not flag: break if cnt == frame_list[index]: filename = os.path.join(root_folder, str(cnt) + '.' + ext) cv2.imwrite(filename, frame) index += 1 def _extract_frame_mode_2(video_capture, frame_list, root_folder, ext='png'): """ extract video frames and save them to disk. this method will use video_capture.set() to locate the frame position and then use video_capture.read() to read Parameters: ----------- video_capture: obtained by cv2.VideoCapture() frame_list: list list of frame numbers root_folder: str root folder to save frames ext: str extension of image filename """ for i in frame_list: video_capture.set(cv2.CAP_PROP_POS_FRAMES, i) flag, frame = video_capture.read() assert flag filename = os.path.join(root_folder, str(i) + '.' + ext) cv2.imwrite(filename, frame) def extract_frame(video_path, increment=None, frame_list=None, mode=1, ext='png'): """ extract video frames and save them to disk. the root folder to save frames is same as video_path (without extension) Parameters: ----------- video_path: str video path increment: int of 'fps' increment of frame indexes frame_list: list list of frame numbers mode: int, 1 or 2 1: go through all the frames using video_capture.read() 2: use video_capture.set() to locate the frame position and then use video_capture.read() to read ext: str extension of image filename """ video_capture = cv2.VideoCapture(video_path) frame_num = int(video_capture.get(cv2.CAP_PROP_FRAME_COUNT)) if increment is None: increment = 1 elif increment == 'fps': fps = video_capture.get(cv2.CAP_PROP_FPS) increment = round(fps) if frame_list is None: frame_list = [i for i in range(0, frame_num, increment)] if frame_num // len(frame_list) > 5 and mode == 1: print("the frames to be extracted is too sparse, " "please consider setting mode = 2 to accelerate") root_folder = os.path.splitext(video_path)[0] os.makedirs(root_folder, exist_ok=True) if mode == 1: _extract_frame_mode_1(video_capture, frame_list, root_folder, ext) elif mode == 2: _extract_frame_mode_2(video_capture, frame_list, root_folder, ext) video_capture.release() if __name__ == '__main__': video_path = r'D:\peppa\Muddy_Puddles.mp4' extract_frame(video_path, increment=30, mode=2)
写视频没有那么多需要注意的地方,主要使用的接口函数是cv2.VideoWriter(video_path, fourcc, fps, size),该函数的主要注意点是入参的设置,video_path是输出视频的文件名,fps是帧率,size是视频的宽高,待写入视频的图像的尺寸必需与size一致。其中不太容易理解的是与视频编码相关的fourcc,该参数的设置需要使用另外一个接口函数:cv2.VideoWriter_fourcc(c1, c2, c3, c4),c1-c4分别是四个字符。
因为获取图像的方式多种多样,而写视频又比较简单,所以不太适合将这部分写成函数,下面以一个例子呈现。
video_path = r'D:\peppa\Muddy_Puddles.avi' root_folder = r'D:\peppa\Muddy_Puddles' fourcc = cv2.VideoWriter_fourcc('X', 'V', 'I', 'D') fps = 25 size = (1920, 1080) video_writer = cv2.VideoWriter(video_path, fourcc, fps, size) for i in range(0, 7788, 30): filename = os.path.join(root_folder, str(i) + '.png') image = cv2.imread(filename) video_writer.write(image) video_writer.release()
fourcc有时候需要多尝试一下,因为不同电脑里安装的编解码器可能不太一样,不见得随便设置一个参数就一定能成功,fourcc有非常多,比如:
paramters | codec | extension |
---|---|---|
(‘P’,‘I’,‘M’,‘1’) | MPEG-1 | avi |
(‘M’,‘J’,‘P’,‘G’) | motion-jpeg | mp4 |
(‘M’,‘P’,‘4’,‘V’) | MPEG-4 | mp4 |
(‘X’,‘2’,‘6’,‘4’) | H.264 | mp4 |
(‘M’, ‘P’, ‘4’, ‘2’) | MPEG-4.2 | |
(‘D’, ‘I’, ‘V’, ‘3’) | MPEG-4.3 | |
(‘D’, ‘I’, ‘V’, ‘X’) | MPEG-4 | avi |
(‘U’, ‘2’, ‘6’, ‘3’) | H263 | |
(‘I’, ‘2’, ‘6’, ‘3’) | H263I | flv |
(‘F’, ‘L’, ‘V’, ‘1’) | FLV1 | |
(‘X’,‘V’,‘I’,‘D’) | MPEG-4 | avi |
(‘I’,‘4’,‘2’,‘0’) | YUV | avi |
上表中的后缀名似乎并不需要严格遵守。
读到这里,这篇“怎么使用Python+OpenCV读写视频”文章已经介绍完毕,想要掌握这篇文章的知识点还需要大家自己动手实践使用过才能领会,如果想了解更多相关内容的文章,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。