这期内容当中小编将会给大家带来有关如何在python中使用subplot函数,文章内容丰富且以专业的角度为大家分析和叙述,阅读完这篇文章希望大家可以有所收获。
一、作图流程:
1.准备数据, , 3作图, 4定制, 5保存, 6显示
1.数据可以是numpy数组,也可以是list
2创建画布:
import matplotlib.pyplot as plt #figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True) #num:图像编号或名称,数字为编号 ,字符串为名称 #figsize:指定figure的宽和高,单位为英寸; #dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 ,1英寸等于2.5cm,A4纸是 21*30cm的纸张 #facecolor:背景颜色 #edgecolor:边框颜色 #frameon:是否显示边 fig = plt.figure() fig = plt.figure(figsize=(8,6), dpi=80) fig.add_axes() fig, axes = plt.subplos(nrows = 2, ncols = 2) #axes是长度为4的列表
3、作图路线
一维数据:
axes[0, 0].plot(x, y) axes[0,1].bar([1,2,3], [2,4,8]) axes[0,2].barh([1,2,3], [2,4,8]) axes[1,0].axhline(0.45) axes[1, 1].scatter(x, y) axes[1,2].axvline(0.65) axes[2,0].fill(x,y, color = 'blue') axes[2,1].fill_between(x,y, color = 'blue') axes[2,2].violinplot(y) axes[0,3].arrow(0,0,0.5,0.5) axes[1,3].quiver(x,y)
4, 定制
plt.plot(x,y, alpha=0.4, c = 'blue', maker = 'o') #颜色,标记,透明度 # 显示数学文本 t = np.arange(0.0, 2.0, 0.01) s = np.sin(2*np.pi*t) plt.plot(t,s) plt.title(r'$\alpha_i > \beta_i$', fontsize=20) plt.text(1, -0.6, r'$\sum_{i=0}^\infty x_i$', fontsize=20) plt.text(0.6, 0.6, r'$\mathcal{A}\mathrm{sin}(2 \omega t)$', fontsize=20) plt.xlabel('time (s)') plt.ylabel('volts (mV)') fig = plt.figure() fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold') ax = fig.add_subplot(111) fig.subplots_adjust(top=0.85) ax.set_title('axes title') ax.set_xlabel('xlabel') ax.set_ylabel('ylabel') ax.text(3, 8, 'boxed italics text in data coords', style='italic', bbox={'facecolor':'red', 'alpha':0.5, 'pad':10}) ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15) ax.text(3, 2, u'unicode: Institut f\374r Festk\366rperphysik') ax.text(0.95, 0.01, 'colored text in axes coords', verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, color='green', fontsize=15) ax.plot([2], [1], 'o') # 注释 ax.annotate('我是注释啦', xy=(2, 1), xytext=(3, 4),color='r',size=15, arrowprops=dict(facecolor='g', shrink=0.05)) ax.axis([0, 10, 0, 10])
5, 保存显示
plt.savefig("1.png") plt.savefig("1.png", trainsparent =True) plt.show()
二、部分函数使用详解:
1, fig.add_subplot(numrows, numcols, fignum) ####三个参数,分别代表子图的行数,列数,图索引号。 eg: ax = fig.add_subplot(2, 3, 1) (or ,ax = fig.add_subplot(231))
2, plt.subplots()使用
x = np.linspace(0, 2*np.pi,400) y = np.sin(x**2) fig, ax = plt.subplots() ax.plot(x, y) ax.set_title('Simple plot') # Creates two subplots and unpacks the output array immediately #fig = plt.figure(figsize=(6,6)) f, (ax1, ax2) = plt.subplots(1, 2, sharey=True) ax1.plot(x, y) ax1.set_title('Sharing Y axis') ax2.scatter(x, y) # Creates four polar axes, and accesses them through the returned array fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True)) axes[0, 0].plot(x, y) axes[1, 1].scatter(x, y) # Share a X axis with each column of subplots plt.subplots(2, 2, sharex='col') # Share a Y axis with each row of subplots plt.subplots(2, 2, sharey='row') # Share both X and Y axes with all subplots plt.subplots(2, 2, sharex='all', sharey='all') # Note that this is the same as plt.subplots(2, 2, sharex=True, sharey=True) # Creates figure number 10 with a single subplot # and clears it if it already exists. fig, ax=plt.subplots(num=10, clear=True)
3.plt.legend()
plt.legend(loc='String or Number', bbox_to_anchor=(num1, num2)) plt.legend(loc='upper center', bbox_to_anchor (0.6,0.95),ncol=3,fancybox=True,shadow=True) #bbox_to_anchor被赋予的二元组中,第一个数值用于控制legend的左右移动,值越大越向右边移动,第二个数值用于控制legend的上下移动,值越大,越向上移动
1、云计算,典型应用OpenStack。2、WEB前端开发,众多大型网站均为Python开发。3.人工智能应用,基于大数据分析和深度学习而发展出来的人工智能本质上已经无法离开python。4、系统运维工程项目,自动化运维的标配就是python+Django/flask。5、金融理财分析,量化交易,金融分析。6、大数据分析。
上述就是小编为大家分享的如何在python中使用subplot函数了,如果刚好有类似的疑惑,不妨参照上述分析进行理解。如果想知道更多相关知识,欢迎关注亿速云行业资讯频道。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。