这篇文章主要介绍了pytorch中forward两个参数的示例分析,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
以channel Attention Block为例子
class CAB(nn.Module):
def __init__(self, in_channels, out_channels):
super(CAB, self).__init__()
self.global_pooling = nn.AdaptiveAvgPool2d(output_size=1)
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.relu = nn.ReLU()
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.sigmod = nn.Sigmoid()
def forward(self, x):
x1, x2 = x # high, low
x = torch.cat([x1,x2],dim=1)
x = self.global_pooling(x)
x = self.conv1(x)
x = self.relu(x)
x = self.conv2(x)
x = self.sigmod(x)
x2 = x * x2
res = x2 + x1
return res
感谢你能够认真阅读完这篇文章,希望小编分享的“pytorch中forward两个参数的示例分析”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。