这篇文章给大家分享的是有关PyTorch中自适应池化Adaptive Pooling的示例分析的内容。小编觉得挺实用的,因此分享给大家做个参考,一起跟随小编过来看看吧。
简介
自适应池化Adaptive Pooling是PyTorch含有的一种池化层,在PyTorch的中有六种形式:
自适应最大池化Adaptive Max Pooling:
torch.nn.AdaptiveMaxPool1d(output_size)
torch.nn.AdaptiveMaxPool2d(output_size)
torch.nn.AdaptiveMaxPool3d(output_size)
自适应平均池化Adaptive Average Pooling:
torch.nn.AdaptiveAvgPool1d(output_size)
torch.nn.AdaptiveAvgPool2d(output_size)
torch.nn.AdaptiveAvgPool3d(output_size)
具体可见官方文档。
官方给出的例子:
>>> # target output size of 5x7
>>> m = nn.AdaptiveMaxPool2d((5,7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> output.size()
torch.Size([1, 64, 5, 7])
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveMaxPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> output.size()
torch.Size([1, 64, 7, 7])
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> output.size()
torch.Size([1, 64, 10, 7])
Adaptive Pooling特殊性在于,输出张量的大小都是给定的output_size output\_sizeoutput_size。例如输入张量大小为(1, 64, 8, 9),设定输出大小为(5,7),通过Adaptive Pooling层,可以得到大小为(1, 64, 5, 7)的张量。
原理
>>> inputsize = 9
>>> outputsize = 4
>>> input = torch.randn(1, 1, inputsize)
>>> input
tensor([[[ 1.5695, -0.4357, 1.5179, 0.9639, -0.4226, 0.5312, -0.5689, 0.4945, 0.1421]]])
>>> m1 = nn.AdaptiveMaxPool1d(outputsize)
>>> m2 = nn.MaxPool1d(kernel_size=math.ceil(inputsize / outputsize), stride=math.floor(inputsize / outputsize), padding=0)
>>> output1 = m1(input)
>>> output2 = m2(input)
>>> output1
tensor([[[1.5695, 1.5179, 0.5312, 0.4945]]]) torch.Size([1, 1, 4])
>>> output2
tensor([[[1.5695, 1.5179, 0.5312, 0.4945]]]) torch.Size([1, 1, 4])
通过实验发现:
下面是Adaptive Average Pooling的c++源码部分。
template <typename scalar_t>
static void adaptive_avg_pool2d_out_frame(
scalar_t *input_p,
scalar_t *output_p,
int64_t sizeD,
int64_t isizeH,
int64_t isizeW,
int64_t osizeH,
int64_t osizeW,
int64_t istrideD,
int64_t istrideH,
int64_t istrideW)
{
int64_t d;
#pragma omp parallel for private(d)
for (d = 0; d < sizeD; d++)
{
/* loop over output */
int64_t oh, ow;
for(oh = 0; oh < osizeH; oh++)
{
int istartH = start_index(oh, osizeH, isizeH);
int iendH = end_index(oh, osizeH, isizeH);
int kH = iendH - istartH;
for(ow = 0; ow < osizeW; ow++)
{
int istartW = start_index(ow, osizeW, isizeW);
int iendW = end_index(ow, osizeW, isizeW);
int kW = iendW - istartW;
/* local pointers */
scalar_t *ip = input_p + d*istrideD + istartH*istrideH + istartW*istrideW;
scalar_t *op = output_p + d*osizeH*osizeW + oh*osizeW + ow;
/* compute local average: */
scalar_t sum = 0;
int ih, iw;
for(ih = 0; ih < kH; ih++)
{
for(iw = 0; iw < kW; iw++)
{
scalar_t val = *(ip + ih*istrideH + iw*istrideW);
sum += val;
}
}
/* set output to local average */
*op = sum / kW / kH;
}
}
}
}
感谢各位的阅读!关于“PyTorch中自适应池化Adaptive Pooling的示例分析”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,让大家可以学到更多知识,如果觉得文章不错,可以把它分享出去让更多的人看到吧!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。