温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

flinksql env的定义

发布时间:2021-07-16 10:05:49 来源:亿速云 阅读:216 作者:chen 栏目:大数据

本篇内容介绍了“flinksql env的定义”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

1、编写 pom

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
    <modelVersion>4.0.0</modelVersion>

    <groupId>org.example</groupId>
    <artifactId>flinksqldemo</artifactId>
    <version>1.0-SNAPSHOT</version>


    <properties>
        <!-- Encoding -->
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

        <scala.binary.version>2.11</scala.binary.version>
        <scala.version>2.11.8</scala.version>
        <kafka.version>0.10.2.1</kafka.version>
        <flink.version>1.12.0</flink.version>
        <hadoop.version>2.7.3</hadoop.version>

        <!-- scope 本地调试时注销 设定为默认的 compile 打包时设定为 provided -->
        <setting.scope>compile</setting.scope>
    </properties>

    <build>
        <plugins>
            <plugin>
                <groupId>org.apache.maven.plugins</groupId>
                <artifactId>maven-compiler-plugin</artifactId>
                <configuration>
                    <source>8</source>
                    <target>8</target>
                </configuration>
            </plugin>
        </plugins>
    </build>



    <dependencies>
        <!--flink start-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-table-planner-blink_2.11</artifactId>
            <version>1.12.0</version>

        </dependency>

        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_2.11</artifactId>
            <version>${flink.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_2.11</artifactId>
            <version>${flink.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-kafka-0.10_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-scala_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-connector-filesystem_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!--<dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>-->
        <!-- flink end-->

        <!-- kafka start -->
        <dependency>
            <groupId>org.apache.kafka</groupId>
            <artifactId>kafka_${scala.binary.version}</artifactId>
            <version>${kafka.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <!-- kafka end-->

        <!-- hadoop start -->
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-common</artifactId>
            <version>${hadoop.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-hdfs</artifactId>
            <version>${hadoop.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <dependency>
            <groupId>org.apache.hadoop</groupId>
            <artifactId>hadoop-client</artifactId>
            <version>${hadoop.version}</version>
            <scope>${setting.scope}</scope>
        </dependency>
        <!-- hadoop end -->

        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>1.7.25</version>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.72</version>
        </dependency>
        <dependency>
            <groupId>redis.clients</groupId>
            <artifactId>jedis</artifactId>
            <version>2.7.3</version>
        </dependency>
        <dependency>
            <groupId>com.google.guava</groupId>
            <artifactId>guava</artifactId>
            <version>29.0-jre</version>
        </dependency>

    </dependencies>

</project>

2、编写代码

package com.jd.data;

import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.api.java.ExecutionEnvironment;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.table.api.EnvironmentSettings;
import org.apache.flink.table.api.TableEnvironment;
import org.apache.flink.table.api.bridge.java.BatchTableEnvironment;
import org.apache.flink.table.api.bridge.java.StreamTableEnvironment;

public class FlinkTableApiDemo {
    public static void main(String[] args) {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        DataStreamSource<String> stream = env.readTextFile("/Users/liuhaijing/Desktop/flinktestword/aaa.txt");

//        1、创建表执行环节
        StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env);

//        ==============================================
//        1.1 老版本planner的流式查询
        EnvironmentSettings set = EnvironmentSettings.newInstance()
                .useOldPlanner() //用老版本
                .inStreamingMode() //流式处理
                .build();

//        老版本的流式处理执行环境
        StreamTableEnvironment oldStreamingEnv = StreamTableEnvironment.create(env, set);

//      1.2 老版本批处理环境
        ExecutionEnvironment executionEnvironment = ExecutionEnvironment.getExecutionEnvironment();
        BatchTableEnvironment batchTableEnvironment = BatchTableEnvironment.create(executionEnvironment);

//        =========================================================

//        1.3 blink 版本的流式查询

        EnvironmentSettings settings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inStreamingMode()
                .build();

        StreamTableEnvironment blinkTableEnv = StreamTableEnvironment.create(env, settings);

//        1.4 blink 版本的批处理查询
        EnvironmentSettings bsettings = EnvironmentSettings.newInstance()
                .useBlinkPlanner()
                .inBatchMode()
                .build();
        TableEnvironment blinkBatchTableEnvironment = TableEnvironment.create(settings);

    }
}

“flinksql env的定义”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI