温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Spark SQL的代码示例分析

发布时间:2022-01-14 16:04:22 来源:亿速云 阅读:109 作者:柒染 栏目:云计算

这篇文章跟大家分析一下“Spark SQL的代码示例分析”。内容详细易懂,对“Spark SQL的代码示例分析”感兴趣的朋友可以跟着小编的思路慢慢深入来阅读一下,希望阅读后能够对大家有所帮助。下面跟着小编一起深入学习“Spark SQL的代码示例分析”的知识吧。

参考官网Spark SQL的例子,自己写了一个脚本:

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.createSchemaRDD

case class UserLog(userid: String, time1: String, platform: String, ip: String, openplatform: String, appid: String)

// Create an RDD of Person objects and register it as a table.
val user = sc.textFile("/user/hive/warehouse/api_db_user_log/dt=20150517/*").map(_.split("\\^")).map(u => UserLog(u(0), u(1), u(2), u(3), u(4), u(5)))
user.registerTempTable("user_log")

// SQL statements can be run by using the sql methods provided by sqlContext.
val allusers = sqlContext.sql("SELECT * FROM user_log")

// The results of SQL queries are SchemaRDDs and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
allusers.map(t => "UserId:" + t(0)).collect().foreach(println)

结果执行出错:

org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 50.0 failed 1 times, most recent failure: Lost task 1.0 in stage 50.0 (TID 73, localhost): java.lang.ArrayIndexOutOfBoundsException: 5
        at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:30)
        at $iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:30)
        at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
        at org.apache.spark.util.Utils$.getIteratorSize(Utils.scala:1319)
        at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:910)
        at org.apache.spark.rdd.RDD$$anonfun$count$1.apply(RDD.scala:910)
        at org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1319)
        at org.apache.spark.SparkContext$$anonfun$runJob$4.apply(SparkContext.scala:1319)
        at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:61)
        at org.apache.spark.scheduler.Task.run(Task.scala:56)
        at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:196)
        at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)

从日志可以看出,是数组越界了。

用命令

sc.textFile("/user/hive/warehouse/api_db_user_log/dt=20150517/*").map(_.split("\\^")).foreach(x => println(x.size))

发现有一行记录split出来的大小是“5”

6
6
6
6
6
6
6
6
6
6
15/05/21 20:47:37 INFO Executor: Finished task 0.0 in stage 2.0 (TID 4). 1774 bytes result sent to driver
6
6
6
6
6
6
5
6
15/05/21 20:47:37 INFO Executor: Finished task 1.0 in stage 2.0 (TID 5). 1774 bytes result sent to driver

原因是这行记录有空值“44671799^2015-03-27 20:56:05^2^117.93.193.238^0^^”

网上找到了解决办法——使用split(str,int)函数。修改后代码:

val sqlContext = new org.apache.spark.sql.SQLContext(sc)
import sqlContext.createSchemaRDD

case class UserLog(userid: String, time1: String, platform: String, ip: String, openplatform: String, appid: String)

// Create an RDD of Person objects and register it as a table.
val user = sc.textFile("/user/hive/warehouse/api_db_user_log/dt=20150517/*").map(_.split("\\^", -1)).map(u => UserLog(u(0), u(1), u(2), u(3), u(4), u(5)))
user.registerTempTable("user_log")

// SQL statements can be run by using the sql methods provided by sqlContext.
val allusers = sqlContext.sql("SELECT * FROM user_log")

// The results of SQL queries are SchemaRDDs and support all the normal RDD operations.
// The columns of a row in the result can be accessed by ordinal.
allusers.map(t => "UserId:" + t(0)).collect().foreach(println)

关于Spark SQL的代码示例分析就分享到这里啦,希望上述内容能够让大家有所提升。如果想要学习更多知识,请大家多多留意小编的更新。谢谢大家关注一下亿速云网站!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI