温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

PyTorch中如何使用inplace字段

发布时间:2022-02-24 11:53:19 来源:亿速云 阅读:124 作者:小新 栏目:开发技术

这篇文章主要介绍了PyTorch中如何使用inplace字段,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。

很多可能对pytorch的inplace字段有一些疑惑,这个字段到底是干啥用的?其实,这涉及到pytorch的运算机制,使用这个字段的话pytorch数据就地处理,这样子就不会占用过多的内存,也就达到了节省运算内存的作用,那么pytorch的inplace字段怎么用呢?接下来小编就带你来了解一下!

例如

torch.nn.ReLU(inplace=True)
inplace=True

表示进行原地操作,对上一层传递下来的tensor直接进行修改,如x=x+3;

inplace=False

表示新建一个变量存储操作结果,如y=x+3,x=y;

inplace=True

可以节省运算内存,不用多存储变量。

补充:PyTorch中网络里面的inplace=True字段的意思

在例如nn.LeakyReLU(inplace=True)中的inplace字段是什么意思呢?有什么用?

inplace=True的意思是进行原地操作,例如x=x+5,对x就是一个原地操作,y=x+5,x=y,完成了与x=x+5同样的功能但是不是原地操作。

上面LeakyReLU中的inplace=True的含义是一样的,是对于Conv2d这样的上层网络传递下来的tensor直接进行修改,好处就是可以节省运算内存,不用多储存变量y。

inplace=True means that it will modify the input directly, without allocating any additional output. It can sometimes slightly decrease the memory usage, but may not always be a valid operation (because the original input is destroyed). However, if you don't see an error, it means that your use case is valid.

感谢你能够认真阅读完这篇文章,希望小编分享的“PyTorch中如何使用inplace字段”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI