温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Scrapy爬虫框架集成selenium的方法

发布时间:2022-04-12 17:23:22 来源:亿速云 阅读:184 作者:zzz 栏目:开发技术

这篇文章主要讲解了“Scrapy爬虫框架集成selenium的方法”,文中的讲解内容简单清晰,易于学习与理解,下面请大家跟着小编的思路慢慢深入,一起来研究和学习“Scrapy爬虫框架集成selenium的方法”吧!

    一、架构介绍

    Scrapy一个开源和协作的框架,其最初是为了页面抓取 (更确切来说, 网络抓取 )所设计的,使用它可以以快速、简单、可扩展的方式从网站中提取所需的数据。但目前Scrapy的用途十分广泛,可用于如数据挖掘、监测和自动化测试等领域,也可以应用在获取API所返回的数据(例如 Amazon Associates Web Services ) 或者通用的网络爬虫。

    Scrapy 是基于twisted框架开发而来,twisted是一个流行的事件驱动的python网络框架。因此Scrapy使用了一种非阻塞(又名异步)的代码来实现并发。整体架构大致如下

    IO多路复用

    Scrapy爬虫框架集成selenium的方法

    # 引擎(EGINE)(大总管)

    引擎负责控制系统所有组件之间的数据流,并在某些动作发生时触发事件。有关详细信息,请参见上面的数据流部分。

    # 调度器(SCHEDULER)

    用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL的优先级队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址

    # 下载器(DOWLOADER)

    用于下载网页内容, 并将网页内容返回给EGINE,下载器是建立在twisted这个高效的异步模型上的

    # 爬虫(SPIDERS)

    SPIDERS是开发人员自定义的类,用来解析responses,并且提取items,或者发送新的请求

    # 项目管道(ITEM PIPLINES)

    在items被提取后负责处理它们,主要包括清理、验证、持久化(比如存到数据库)等操作

    # 两个中间件

    -爬虫中间件

    -下载中间件(用的最多,加头,加代理,加cookie,集成selenium)

    二、安装创建和启动

    # 1 框架 不是 模块
    # 2 号称爬虫界的django(你会发现,跟django很多地方一样)
    # 3 安装
    	-mac,linux平台:pip3 install scrapy
      -windows平台:pip3 install scrapy(大部分人可以)
      	- 如果失败:
          1、pip3 install wheel #安装后,便支持通过wheel文件安装软件,wheel文件官网:https://www.lfd.uci.edu/~gohlke/pythonlibs
          3、pip3 install lxml
          4、pip3 install pyopenssl
          5、下载并安装pywin32:https://sourceforge.net/projects/pywin32/files/pywin32/
          6、下载twisted的wheel文件:http://www.lfd.uci.edu/~gohlke/pythonlibs/#twisted
          7、执行pip3 install 下载目录\Twisted-17.9.0-cp36-cp36m-win_amd64.whl
          8、pip3 install scrapy
     # 4 在script文件夹下会有scrapy.exe可执行文件
    	-创建scrapy项目:scrapy startproject 项目名   (django创建项目)
      	-创建爬虫:scrapy genspider 爬虫名 要爬取的网站地址   # 可以创建多个爬虫
     # 5 命令启动爬虫
    		-scrapy crawl 爬虫名字
      		-scrapy crawl 爬虫名字 --nolog   # 没有日志输出启动
     # 6 文件执行爬虫(推荐使用)
    	-在项目路径下创建一个main.py,右键执行即可
      	from scrapy.cmdline import execute
        # execute(['scrapy','crawl','chouti','--nolog'])  # 没有设置日志级别
        execute(['scrapy','crawl','chouti'])			  # 设置了日志级别

    三、配置文件目录介绍

    -crawl_chouti   # 项目名
      -crawl_chouti # 跟项目一个名,文件夹
        -spiders    # spiders:放着爬虫  genspider生成的爬虫,都放在这下面
        	-__init__.py
          -chouti.py # 抽屉爬虫
          -cnblogs.py # cnblogs 爬虫
        -items.py     # 对比django中的models.py文件 ,写一个个的模型类
        -middlewares.py  # 中间件(爬虫中间件,下载中间件),中间件写在这
        -pipelines.py   # 写持久化的地方(持久化到文件,mysqlredismongodb)
        -settings.py    # 配置文件
      -scrapy.cfg       # 不用关注,上线相关的
    # 配置文件settings.py
    ROBOTSTXT_OBEY = False   # 是否遵循爬虫协议,强行运行
    USER_AGENT = 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.149 Safari/537.36'    # 请求头中的ua,去浏览器复制,或者用ua池拿
    LOG_LEVEL='ERROR' # 这样配置,程序错误信息才会打印,
    	#启动爬虫直接 scrapy crawl 爬虫名   就没有日志输出
      	# scrapy crawl 爬虫名 --nolog  # 配置了就不需要这样启动了
    # 爬虫文件
    class ChoutiSpider(scrapy.Spider):
        name = 'chouti'   # 爬虫名字
        allowed_domains = ['https://dig.chouti.com/']  # 允许爬取的域,想要多爬就注释掉
        start_urls = ['https://dig.chouti.com/']   # 起始爬取的位置,爬虫一启动,会先向它发请求
        def parse(self, response):  # 解析,请求回来,自动执行parser,在这个方法中做解析
            print('---------------------------',response)

    Scrapy爬虫框架集成selenium的方法

    四、爬取数据,并解析

    # 1 解析,可以使用bs4解析
    from bs4 import BeautifulSoup
    soup=BeautifulSoup(response.text,'lxml')
    soup.find_all()  # bs4解析
    soup.select()  # css解析
    # 2 内置的解析器
    response.css  
    response.xpath
    # 内置解析 
      # 所有用css或者xpath选择出来的都放在列表中
      # 取第一个:extract_first()
      # 取出所有extract()
    # css选择器取文本和属性:
        # .link-title::text  # 取文本,数据都在data中
        # .link-title::attr(href)   # 取属性,数据都在data中
    # xpath选择器取文本和属性
        # .//a[contains(@class,"link-title")/text()]
        #.//a[contains(@class,"link-title")/@href]
    # 内置css选择期,取所有
    div_list = response.css('.link-con .link-item')
    for div in div_list:
        content = div.css('.link-title').extract()
        print(content)

    五、数据持久化

    # 方式一(不推荐)
      -1 parser解析函数,return 列表,列表套字典
        # 命令   (支持:('json', 'jsonlines', 'jl', 'csv', 'xml', 'marshal', 'pickle')
        # 数据到aa.json文件中
      -2 scrapy crawl chouti -o aa.json   
    # 代码:
    lis = []
    for div in div_list:
        content = div.select('.link-title')[0].text
        lis.append({'title':content})
        return lis
    # 方式二 pipline的方式(管道)
       -1 在items.py中创建模型类
       -2 在爬虫中chouti.py,引入,把解析的数据放到item对象中(要用中括号)
       -3 yield item对象
       -4 配置文件配置管道
           ITEM_PIPELINES = {
            # 数字表示优先级(数字越小,优先级越大)
           'crawl_chouti.pipelines.CrawlChoutiPipeline': 300,
           'crawl_chouti.pipelines.CrawlChoutiRedisPipeline': 301,
        	}
      -5 pipline.py中写持久化的类
            spider_open  # 方法,一开始就打开文件
            process_item # 方法,写入文件
            spider_close # 方法,关闭文件

    保存到文件

    # choutiaa.py 爬虫文件
    import scrapy
    from chouti.items import ChoutiItem  # 导入模型类
    class ChoutiaaSpider(scrapy.Spider):
        name = 'choutiaa'
        # allowed_domains = ['https://dig.chouti.com/']   # 允许爬取的域
        start_urls = ['https://dig.chouti.com//']   # 起始爬取位置
        # 解析,请求回来,自动执行parse,在这个方法中解析
        def parse(self, response):
            print('----------------',response)
            from bs4 import BeautifulSoup
            soup = BeautifulSoup(response.text,'lxml')
            div_list = soup.select('.link-con .link-item')
            for div in div_list:
                content = div.select('.link-title')[0].text
                href = div.select('.link-title')[0].attrs['href']
                item = ChoutiItem()  # 生成模型对象
                item['content'] = content  # 添加值
                item['href'] = href
                yield item  # 必须用yield  	
    # items.py 模型类文件
    import scrapy
    class ChoutiItem(scrapy.Item):
        content = scrapy.Field()
        href = scrapy.Field()
    # pipelines.py 数据持久化文件
    class ChoutiPipeline(object):
        def open_spider(self, spider):
            # 一开始就打开文件
            self.f = open('a.txt', 'w', encoding='utf-8')
        def process_item(self, item, spider):
            # print(item)
            # 写入文件的操作
            self.f.write(item['content'])
            self.f.write(item['href'])
            self.f.write('\n')
            return item
        def close_spider(self, spider):
            # 写入完毕,最后关闭文件
            self.f.close()
    # setting.py
    ITEM_PIPELINES = {
        # 数字表示优先级,越小优先级越高
       'chouti.pipelines.ChoutiPipeline': 300,
       'chouti.pipelines.ChoutiRedisPipeline': 301,
    }

    保存到redis

    # settings.ps
    ITEM_PIPELINES = {
        # 数字表示优先级,越小优先级越高
       'chouti.pipelines.ChoutiPipeline': 300,
       'chouti.pipelines.ChoutiRedisPipeline': 301,
    }
    # pipelines.py
    # 保存到redis
    from redis import Redis
    class ChoutiRedisPipeline(object):
        def open_spider(self, spider):
            # 不写参数就用默认配置
            self.conn = Redis(password='123')  # 一开始就拿到redis对象
        def process_item(self, item, spider):
            print(item)
            import json
            s = json.dumps({'content': item['content'], 'href': item['href']})
            self.conn.hset('choudi_article', item['id'], s)
            return item
        def close_spider(self, spoder):
            pass
            # self.conn.close()
    # chouti.py
    import scrapy
    from chouti.items import ChoutiItem  # 导入模型类
    class ChoutiaaSpider(scrapy.Spider):
        name = 'choutiaa'
        # allowed_domains = ['https://dig.chouti.com/']   # 允许爬取的域
        start_urls = ['https://dig.chouti.com//']   # 起始爬取位置
        # 解析,请求回来,自动执行parse,在这个方法中解析
        def parse(self, response):
            print('----------------',response)
            from bs4 import BeautifulSoup
            soup = BeautifulSoup(response.text,'lxml')
            div_list = soup.select('.link-con .link-item')
            for div in div_list:
                content = div.select('.link-title')[0].text
                href = div.select('.link-title')[0].attrs['href']
                id = div.attrs['data-id']
                item = ChoutiItem()  # 生成模型对象
                item['content'] = content  # 添加值
                item['href'] = href
                item['id'] = id
                yield item  # 必须用yield

    保存到MongoDB

    #一.下载并安装mongodb
    pip install pymongo
    #二、在settings中打开PIPELINES并把数据库相应配置写入
    ITEM_PIPELINES = {
        '<spider_name>.pipelines.ChoutiPipeline': 300,
    }
    MONGODB_HOST = '127.0.0.1'
    # 端口号,默认27017
    MONGODB_PORT = 27017
    # 设置数据库名称
    MONGODB_DBNAME = 'Chouti'
    # 存放本数据的表名称
    MONGODB_DOCNAME = 'Chouti'
    #三.修改pipelines文件
    import pymongo
    from scrapy.utils.project import get_project_settings
    settings = get_project_settings()
    class DouluodaluPipeline(object):
        def __init__(self):
            # 获取setting主机名、端口号和数据库名称
            host = settings['MONGODB_HOST']
            port = settings['MONGODB_PORT']
            dbname = settings['MONGODB_DBNAME']
            # 创建数据库连接
            client = pymongo.MongoClient(host=host,port=port)
            # 指向指定数据库
            mdb = client[dbname]
            # 获取数据库里面存放数据的表名
            self.post = mdb[settings['MONGODB_DOCNAME']]
        def process_item(self, item, spider):
            data = dict(item)
            # 向指定的表里添加数据
            self.post.insert(data)
            return item

    保存到mysql

    import pymysql.cursors
    class MySQLPipeline(object):
        def __init__(self):
            # 连接数据库
            self.connect = pymysql.connect(
                host='127.0.0.1',  # 数据库地址
                port=3306,  # 数据库端口
                db='scrapyMysql',  # 数据库名
                user='root',  # 数据库用户名
                passwd='root',  # 数据库密码
                charset='utf8',  # 编码方式
                use_unicode=True)
            # 通过cursor执行增删查改
            self.cursor = self.connect.cursor()
        def process_item(self, item, spider):
            self.cursor.execute(
                """insert into mingyan(tag, cont)
                value (%s, %s)""",  # 纯属python操作mysql知识,不熟悉请恶补
                (item['tag'],  # item里面定义的字段和表字段对应
                 item['cont'],))
            # 提交sql语句
            self.connect.commit()
            return item  # 必须实现返回

    六、动作链,控制滑动的验证码

    from selenium import webdriver
    from selenium.webdriver import ActionChains
    import time
    bro=webdriver.Chrome(executable_path='./chromedriver')
    bro.get('https://www.runoob.com/try/try.php?filename=jqueryui-api-droppable')
    bro.implicitly_wait(10)
    #切换frame(很少)
    bro.switch_to.frame('iframeResult')
    div=bro.find_element_by_xpath('//*[@id="draggable"]')
    # 1 生成一个动作练对象
    action=ActionChains(bro)
    # 2 点击并夯住某个控件
    action.click_and_hold(div)
    # 3 移动(三种方式)
    # action.move_by_offset() # 通过坐标(x,y)
    # action.move_to_element() # 到另一个标签
    # action.move_to_element_with_offset() # 到另一个标签,再偏移一部分
    for i in range(5):
        action.move_by_offset(10,10)
    # 4 真正的移动
    action.perform()
    
    # 5 释放控件(松开鼠标)
    action.release()
    
    async def login():
        for res in setting.user:
            try:
                username = res[0]
                password = res[1]
                # headless参数设为False,则变成有头模式
                browser = await launch(
                    {'headless': False}
                )
                # 打开一个页面
                page = await browser.newPage()
                await page.setViewport(viewport={'width': 1280, 'height': 800})
                res = await page.goto('https://login.taobao.com/', options={'timeout': 10000})
                await page.type('#fm-login-id', username)
                await page.type('#fm-login-password', password)
                await page.waitFor(1000)  # 等待时间
                slider = await page.querySelector('#nc_1_n1z')  # 是否有滑块
                if slider:
                    try:
                        print('有滑块')
                        await page.hover('#nc_1_n1z')  # 不同场景的验证码模块能名字不同。
                        await page.mouse.down()
                        await page.mouse.move(2000, 0, {'delay': random.randint(1000, 2000)})
                        await page.mouse.up()
                    except Exception as e:
                        print(e)
                        input('验证失败,人工登录:')
                else:
                    print('没有滑块')
                await page.click("#login-form > div.fm-btn > button")  # 点击登录
                input('进入登录成功页面后,按回车:')
                return page
            except Exception as e:
                continue

    七、提高爬取效率

    - 在配置文件中进行相关的配置即可:(默认还有一套setting)
    #1 增加并发:
    默认scrapy开启的并发线程为32个,可以适当进行增加。在settings配置文件中修改CONCURRENT_REQUESTS = 100值为100,并发设置成了为100。
    #2 提高日志级别:
    在运行scrapy时,会有大量日志信息的输出,为了减少CPU的使用率。可以设置log输出信息为INFO或者ERROR即可。在配置文件中编写:LOG_LEVEL = ‘INFO'
    # 3 禁止cookie:
    如果不是真的需要cookie,则在scrapy爬取数据时可以禁止cookie从而减少CPU的使用率,提升爬取效率。在配置文件中编写:COOKIES_ENABLED = False
    # 4禁止重试:
    对失败的HTTP进行重新请求(重试)会减慢爬取速度,因此可以禁止重试。在配置文件中编写:RETRY_ENABLED = False
    # 5 减少下载超时:
    如果对一个非常慢的链接进行爬取,减少下载超时可以能让卡住的链接快速被放弃,从而提升效率。在配置文件中进行编写:DOWNLOAD_TIMEOUT = 10 超时时间为10s

    八、fake-useragent池

    # pip3 install fake-useragent
    from fake_useragent import UserAgent
    ua = UserAgent(verify_ssl=False)
    print(ua.random)  # 随机获取一个UserAgent

    九、中间件配置

    #大中间件:下载中间件,爬虫中间件
    # 1 写在middlewares.py中(名字随便命名)
    # 2 配置生效()
    # 爬虫中间件
    SPIDER_MIDDLEWARES = {
       'cnblogs_crawl.middlewares.CnblogsCrawlSpiderMiddleware': 543,
    }
    # 下载中间件
    DOWNLOADER_MIDDLEWARES = {
       'cnblogs_crawl.middlewares.CnblogsCrawlDownloaderMiddleware': 543,
    }
    # 下载中间件
    # 在cnblogs_crawl.middlewares.CnblogsCrawlDownloaderMiddleware中有五个方法
    # 请求出去的时候
    def process_request(self, request, spider)
    	# Must either:
        # - return None:   # 返回none继续处理,进入下一个中间件
        # - return Response: 当次请求结束,把Response丢给引擎处理(可以自己爬,包装成Response)
        # - return Request : 相当于把Request重新给了引擎,引擎再去做调度
        # - 抛异常:执行process_exception
    # 请求回来的时候
    def process_response(self, request, response, spider)
    	# - return a Response object :继续处理当次Response,继续走后续的中间件
        # - return a Request object:重新给引擎做调度
    	# - 抛异常:执行process_exception
    # 请求异常的时候
    def process_exception(self, request, exception, spider)
    	# - return None: 不处理异常,继续丢给下面
        # - return a Response:停止异常处理,不丢给下面。给引擎。Response给爬虫分析数据
        # - return a Request:停止异常处理,不丢给下面。给引擎。Request重新调度

    process_exception 错误处理

    class CnblogsSpider(scrapy.Spider):
        name = 'cnblogs4'
        allowed_domains = ['www.cnblogs.com']
        start_urls = ['http://wwwsadasd.cnblogs.com/']   # 错误的网址,报错走异常处理
    # 走异常处理,重新返回一个正确的Request对象
    def process_exception(self, request, exception, spider):
        print(request.url)  # http://wwwsadasd.cnblogs.com/
        from scrapy.http import Request
        return Request('http://www.cnblogs.com/',callback=spider.parser_detail)

    process_request 加代理,加cookie等

        def process_request(self, request, spider):
            # 1 加cookie(request.cookies就是访问该网站的cookie)
            print(request.cookies)
            request.cookies={'name':"jeff",'age':18}  # 从你的cookie池中取出来的,  字典
            print(request.cookies)
            # 2 加代理
            request.meta['proxy']=self.get_proxy()   # 从代理池中获取一个
            print(request.meta['proxy'])
            # 3 修改ua
            from fake_useragent import UserAgent   # ua模块,随机获取一个
            ua = UserAgent(verify_ssl=False)
            request.headers['User-Agent']=ua.random
            print(request.headers)
    # 代理池
    def get_proxy(self):
        import requests
        ret=requests.get('http://0.0.0.0:5010/get').json()['proxy']
        print(ret)
        return ret
            return None

    十、集成selenium

    #可在两个地方集成。
    #1.process_request(请求出去的时候)  # 推荐写这里,少请求一次。直接集成封装
    #2.process_response(请求回来的时候) # 不推荐,因为夺走了一次请求,回来再集成封装
    # 方案一:缺点很大。每次一请求都要打开一个bro浏览器
    def process_request(self, request, spider):
        from selenium import webdriver
        from scrapy.http import HtmlResponse
        bro = webdriver.Chrome(executable_path='../chromedriver')
        bro.get(request.url)
        text = bro.page_source
        response = HtmlResponse(url=request.url, body=text.encode('utf-8'), status=200)
        return response
    # 方案二:改进为一开始就打开一个bro浏览器,后面都用这一个bro
    class CnblogsSpider(scrapy.Spider):
        name = 'cnblogs'
        from selenium import webdriver
        # 在爬虫一开始就打开bro对象
        bro = webdriver.Chrome(executable_path='../chromedriver')  
        # 在爬虫中新添加的方法:关闭bro
        def close(spider, reason):
        	spider.bro.close()  # 爬虫结束关闭
    # 中间件中
    def process_request(self, request, spider):
        from scrapy.http import HtmlResponse
        spider.bro.get(request.url)  # 每个请求使用一个bro
        text = spider.bro.page_source
        response = HtmlResponse(url=request.url, body=text.encode('utf-8'), status=200)
        return response

    十一、指纹和布隆过滤器实现增量爬取

    什么是增量爬取?

    -增量爬取(100链接,150个链接)

    • -已经爬过的,放到某个位置(mysql,redis中:集合)

    • -如果用默认的,爬过的地址,放在内存中,只要项目一重启,就没了,它也不知道我爬过那个了,所以要自己重写去重方案

    -你写的去重方案,占得内存空间更小

        -bitmap方案

        -BloomFilter布隆过滤器

    网址指纹

    # 一、网址指纹
    from scrapy.http import Request
    from scrapy.utils.request import request_fingerprint
    # 这种网址是一个
    request1 = Request(url='https://www.baidu.com/s?name=jeff&age=18')
    request2 = Request(url='https://www.baidu.com/s?age=18&name=jeff')
    ret1=request_fingerprint(requests1)
    ret2=request_fingerprint(requests2)
    print(ret1) # 6961985868392ae44c15ada494ddeda856cf75fc
    print(ret2) # 6961985868392ae44c15ada494ddeda856cf75fc

    布隆过滤器

    # 安装
    # 1.需要先安装bitarray  #下载地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/
    # 2.下载好之后 pip3 install 文件拖进去
    # 3.pip3 install pybloom_live
    #ScalableBloomFilter 可以自动扩容
    from pybloom_live import ScalableBloomFilter
    bloom = ScalableBloomFilter(initial_capacity=100, error_rate=0.001, mode=ScalableBloomFilter.LARGE_SET_GROWTH)
    url = "https://www.baidu.com/s?name=jeff&age=18"
    url2 = "https://www.baidu.com/s?age=18&name=jeff"
    bloom.add(url)
    print(url in bloom)
    print(url2 in bloom)

    使用一:添加网址(不推荐)

    #BloomFilter 是定长的
    from pybloom_live import BloomFilter
    bf = BloomFilter(capacity=1000)
    url='www.baidu.com'
    bf.add(url)
    print(url in bf)
    print("www.liuqingzheng.top" in bf)

    使用二:添加网址指纹(推荐),配合指纹使用

    from scrapy.http import Request
    from scrapy.utils.request import request_fingerprint
    from pybloom_live import BloomFilter
    request1 = Request(url='https://www.baidu.com/s?name=jeff&age=18')
    request2 = Request(url='https://www.baidu.com/s?age=18&name=jeff')
    ret1=request_fingerprint(request1)
    ret2=request_fingerprint(request2)
    print(ret1) # 6961985868392ae44c15ada494ddeda856cf75fc
    print(ret2) # 6961985868392ae44c15ada494ddeda856cf75fc
    bf = BloomFilter(capacity=1000) # 1000容量
    bf.add(ret2)
    if ret1 in bf:
        print('已经爬过此网站,True')
    else:
        bf.add(ret1)  # 添加
        print('还没有爬过此网站,返回false')

    十二、分布式爬虫

    github地址:https://github.com/rmax/scrapy-redis
    # 1 安装pip3 install scrapy-redis
    # 源码部分,不到1000行,
    # 1 原来的爬虫继承
    from scrapy_redis.spiders import RedisSpider
    class CnblogsSpider(RedisSpider):
      	#start_urls = ['http://www.cnblogs.com/']
        redis_key = 'myspider:start_urls'  # 起始地址为空,在redis中拿
    # 2 在setting中配置
      SCHEDULER = "scrapy_redis.scheduler.Scheduler"
      DUPEFILTER_CLASS = "scrapy_redis.dupefilter.RFPDupeFilter"
      ITEM_PIPELINES = { 
         'chouti.pipelines.Pipeline': 300,               # 用自己的入库类,比如mysql中
         # 'scrapy_redis.pipelines.RedisPipeline': 300  # 存在别人写好的redis入库类
      }
    REDIS_PARAMS  = {'password':'123'}   # 如果redis有密码就配置
    #其他更多配置见github
    # 3 多台机器上启动scrapy
    # 4 向reids中发送起始url
    redis-cli lpush myspider:start_urls https://www.cnblogs.com

    十三、爬虫框架全站爬取使用案例

    可以同时启动两个爬虫,爬不同的网站。但是建议爬不同的网站新建项目

    chouti.py 爬虫:

    import scrapy
    from chouti.items import ChoutiItem  # 导入模型类
    class ChoutiaaSpider(scrapy.Spider):
        name = 'choutiaa'
        # allowed_domains = ['https://dig.chouti.com/']   # 允许爬取的域
        start_urls = ['https://dig.chouti.com//']   # 起始爬取位置
        # 解析,请求回来,自动执行parse,在这个方法中解析
        def parse(self, response):
            print('----------------',response)
            from bs4 import BeautifulSoup
            soup = BeautifulSoup(response.text,'lxml')
            div_list = soup.select('.link-con .link-item')
            for div in div_list:
                content = div.select('.link-title')[0].text
                href = div.select('.link-title')[0].attrs['href']
                id = div.attrs['data-id']
                item = ChoutiItem()  # 生成模型对象
                item['content'] = content  # 添加值
                item['href'] = href
                item['id'] = id
                yield item  # 必须用yield

    cnblogs.py 爬虫:

    # -*- coding: utf-8 -*-
    import scrapy
    from bs4 import BeautifulSoup
    from chouti.items import CnblogsItem  # 导入模型类
    from scrapy.http import Request
    class CnblogsSpider(scrapy.Spider):
        name = 'cnblogs'
        start_urls = ['https://www.cnblogs.com/']
        def parse(self, response):
            print('------', response)
            soup = BeautifulSoup(response.text, 'lxml')
            div_list = soup.select('#post_list .post_item')
            for div in div_list:
                author = div.select('.post_item_foot a')[0].text
                content_url = div.select('h4 a')[0].attrs['href']
                title = div.select('h4')[0].text
                content_summary = div.select('p')[0].text
                item = CnblogsItem()
                item['author'] = author
                item['content_url'] = content_url
                item['title'] = title
                item['content_summary'] = content_summary
                # print(f'''
                # 作者:{author}
                # 文章地址:{content_url}
                # 标题:{title}
                # 文章内容:{content_summary}
                # ''')            
                # 继续往深一层爬取,传递给content_parse
                yield Request(content_url, callback=self.content_parse, meta={'item': item})
            # 获取下一页的标签网址
            next = soup.select('#paging_block > div > a:nth-last-child(1)')[0].attrs['href']
            next = 'https://www.cnblogs.com/'+next
            yield Request(next)   # 继续爬取下一页
        def content_parse(self, response):
            item = response.meta.get('item')
            content = response.css('#cnblogs_post_body').extract_first()
            if not content:
                content = response.css('content').extract_first()
            item['content'] = content
            # print(item)
            yield item

    items.py 模型类:

    # -*- coding: utf-8 -*-
    # Define here the models for your scraped items
    # See documentation in:
    # https://docs.scrapy.org/en/latest/topics/items.html
    import scrapy
    class ChoutiItem(scrapy.Item):
        content = scrapy.Field()
        href = scrapy.Field()
        id = scrapy.Field()
    class CnblogsItem(scrapy.Item):
        author = scrapy.Field()
        content_url = scrapy.Field()
        title = scrapy.Field()
        content_summary = scrapy.Field()
        content = scrapy.Field()

    pipelines.py 数据持久化文件

    # -*- coding: utf-8 -*-
    # Define your item pipelines here
    # Don't forget to add your pipeline to the ITEM_PIPELINES setting
    # See: https://docs.scrapy.org/en/latest/topics/item-pipeline.html
    # 保存到文件
    class Pipeline(object):
        def open_spider(self, spider):
            # choutiaa爬虫入库前
            if spider.name == 'choutiaa':
                # 一开始就打开文件
                self.f = open('a.txt', 'w', encoding='utf-8')
            # cnblog爬虫入库前
            elif spider.name == 'cnblogs':
                import pymysql
                self.conn = pymysql.Connect(host='127.0.0.1', port=3306, db='cnblogs', user='root', password="123",autocommit=True)
        def process_item(self, item, spider):
            # choutiaa爬虫入库中
            if spider.name == 'choutiaa':
                # 写入文件的操作
                self.f.write(item['content'])
                self.f.write(item['href'])
                self.f.write(item['id'])
                self.f.write('\n')
                return item
            # cnblog爬虫入库中
            elif spider.name == 'cnblogs':
                print('cnblogs入库中')
                curser = self.conn.cursor()
                sql = 'insert into article (author,content_url,title,content_summary,content) values (%s,%s,%s,%s,%s)'
                curser.execute(sql, (
                item['author'], item['content_url'], item['title'], item['content_summary'], item['content']))
        def close_spider(self, spider):
            # choutiaa爬虫入库结束
            if spider.name == 'choutiaa':
                # 写入完毕,最后关闭文件
                self.f.close()
            # cnblog爬虫入库结束
            elif spider.name == 'cnblogs':
                print('cnblogs入库完毕')
                self.conn.close()

    main.py

    from scrapy.cmdline import execute
    # execute(['scrapy','crawl','choutiaa'])
    execute(['scrapy','crawl','cnblogs'])

    感谢各位的阅读,以上就是“Scrapy爬虫框架集成selenium的方法”的内容了,经过本文的学习后,相信大家对Scrapy爬虫框架集成selenium的方法这一问题有了更深刻的体会,具体使用情况还需要大家实践验证。这里是亿速云,小编将为大家推送更多相关知识点的文章,欢迎关注!

    向AI问一下细节

    免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

    AI