本篇内容主要讲解“pandas怎么实现按照多列排序ascending”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“pandas怎么实现按照多列排序ascending”吧!
代码示例:
import pandas as pd #读取文件 df = pd.read_csv('./TianQi.csv') #字符串替换和类型转换 df['最高温度'] = df['最高温度'].str.replace('℃','').astype('int32') df.loc[:,'最低温度'] = df['最低温度'].str.replace('℃','').astype('int32') #排序并获取最高温度前5名 print(df.sort_values(by='最高温度',ascending=False).head()) ''' 打印: 日期 最高温度 最低温度 天气 风向 风级 空气质量 184 2019/7/4 38 25 晴~多云 西南风 2级 良 206 2019/7/26 37 27 晴 西南风 2级 良 142 2019/5/23 37 21 晴 东南风 2级 良 183 2019/7/3 36 24 晴 东南风 1级 良 204 2019/7/24 36 27 多云~雷阵雨 西南风 2级 良 ''' #按照多列排序 print(df.sort_values(by=['最高温度','最低温度'],ascending= True).head(10)) ''' 打印: 日期 最高温度 最低温度 天气 风向 风级 空气质量 363 2019/12/30 -5 -12 晴 西北风 4级 优 364 2019/12/31 -3 -10 晴 西北风 1级 优 42 2019/2/12 -3 -8 小雪~多云 东北风 2级 优 44 2019/2/14 -3 -6 小雪~多云 东南风 2级 良 14 2019/1/15 -2 -10 晴 西北风 3级 良 37 2019/2/7 -2 -7 多云 东北风 3级 优 38 2019/2/8 -1 -7 多云 西南风 2级 优 4 2019/1/5 0 -8 多云 东北风 2级 优 39 2019/2/9 0 -8 多云 东北风 2级 优 40 2019/2/10 0 -8 多云 东南风 1级 优 ''' print(df.sort_values(by=['最高温度','最低温度'],ascending= False).head(10)) ''' 打印: 日期 最高温度 最低温度 天气 风向 风级 空气质量 184 2019/7/4 38 25 晴~多云 西南风 2级 良 206 2019/7/26 37 27 晴 西南风 2级 良 142 2019/5/23 37 21 晴 东南风 2级 良 201 2019/7/21 36 27 晴~多云 西南风 2级 轻度污染 204 2019/7/24 36 27 多云~雷阵雨 西南风 2级 良 207 2019/7/27 36 27 多云 东南风 2级 轻度污染 174 2019/6/24 36 24 多云 东南风 2级 良 175 2019/6/25 36 24 多云 东南风 2级 良 183 2019/7/3 36 24 晴 东南风 1级 良 170 2019/6/20 36 23 多云~晴 东南风 2级 轻度污染 ''' print(df.sort_values(by=['最高温度','最低温度'],ascending= [True,False]).head(10)) ''' 打印: 日期 最高温度 最低温度 天气 风向 风级 空气质量 363 2019/12/30 -5 -12 晴 西北风 4级 优 44 2019/2/14 -3 -6 小雪~多云 东南风 2级 良 42 2019/2/12 -3 -8 小雪~多云 东北风 2级 优 364 2019/12/31 -3 -10 晴 西北风 1级 优 37 2019/2/7 -2 -7 多云 东北风 3级 优 14 2019/1/15 -2 -10 晴 西北风 3级 良 38 2019/2/8 -1 -7 多云 西南风 2级 优 4 2019/1/5 0 -8 多云 东北风 2级 优 39 2019/2/9 0 -8 多云 东北风 2级 优 40 2019/2/10 0 -8 多云 东南风 1级 优 '''
Series
s.sort_index(ascending=False)
对series的索引进行排序,默认升序
s.sort_values(ascending=False)
对series的值进行排序,对值进行排序的时候,无论是升序还是降序,缺失值(NaN)都会排在最后面
DataFrame:
dt.sort_index(ascending=False)#按列索引进行降序排序 dt.sort_inex(axis=1)#按行的索引进行排序 dt.sort_values(by='columns_name')#按指定列的值进行排序 dt.sort_values(by='row_name', axis=1)#按指定行的值进行排序
使用by参数进行某几列(行)排序的时候,以列表中的第一个为准,可能后面的不会生效,因为有的时候无法做到既对第一行(列)进行升序排序又对第二行(列)进行排序。
在指定行值进行排序的时候,必须设置axis=1,不然会报错,因为默认指定的是列索引,找不到这个索引所以报错,axis=1的意思是指定行索引。
Series
s.rank(method=‘first')
对series的值进行升序排名,输出为排名,当排名相同时,输出平均排名,method=‘first’排名相同时按照值在数组中出现的顺序排序
method参数除了,first按值在原始数据中的出现顺序分配排名,还有min使用整个分组的最小排名,max是用整个分组的最大排名,average使用平均排名,也是默认的排名方式。还可以设置ascending参数,设置降序还是升序排序。
DataFrame:
dt.rank()#按列进行排名 dt.rank(axis=1)#按行进行排名
method与ascending参数的使用与Series的相同
到此,相信大家对“pandas怎么实现按照多列排序ascending”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。