温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Pandas中read_csv()读取文件跳过报错行怎么办

发布时间:2020-08-01 11:37:03 来源:亿速云 阅读:911 作者:小猪 栏目:开发技术

小编这次要给大家分享的是Pandas中read_csv()读取文件跳过报错行怎么办,文章内容丰富,感兴趣的小伙伴可以来了解一下,希望大家阅读完这篇文章之后能够有所收获。

读取文件时遇到和列数不对应的行,此时会报错。若报错行可以忽略,则添加以下参数:

样式:

pandas.read_csv(***,error_bad_lines=False)

pandas.read_csv(filePath) 方法来读取csv文件时,可能会出现这种错误:

ParserError:Error tokenizing data.C error:Expected 2 fields in line 407,saw 3.

是指在csv文件的第407行数据,期待2个字段,但在第407行实际发现了3个字段。

原因:header只有两个字段名,但数据的第407行却出现了3个字段(可能是该行数据包含了逗号,或者确实有三个部分),导致pandas不知道该如何处理。

解决办法:把第407行多出的字段删除,或者通过在read_csv方法中设置error_bad_lines=False来忽略这种错误:

改为

pandas.read_csv(filePath,error_bad_lines=False)

来忽略掉其中出现错乱(例如,由于逗号导致多出一列)的行。

KeyError错误:

报这种错是由于使用了DataFrame中没有的字段,例如id字段,原因可能是:

.csv文件的header部分没加逗号分割,此时可使用df.columns.values来查看df到底有哪些字段:

print(df.columns.values)

.在操作DataFrame的过程中丢掉了id字段的header,却没发现该字段已丢失。

例如:

df=df[df['id']!='null']#取得id字段不为null的行
df=df['id']#赋值后df为Series,表示df在id列的值,而不再是一个DataFrame,于是丢掉了id的头,此时若再使用df['id']将报错。

取列的值,与取列的区别:

df=df['id']#取id列的值,赋值后df为Series类型,可用print(type(df))来查看其类型
df=df[['id']]#只取df的id列作为一个新的DataFrame,赋值后df仍然是一个DataFrame
df=df[['id','age']]#取df的id和age列作为一个新的DataFrame,赋值后df仍然是一个DataFrame

过滤行

df=df[df['id']!='null']#过滤掉id字段取值为'null'的行

注意,此处的'null'是一个字符串,若df中某行id字段的值不是字符串型,或者为空,将报TypeError:invalid type comparison错,因为只有相同类型的值才能进行比较。

解决办法:如果不能保证id列都是string类型,则需要去掉该过滤条件。

补充知识:pandas 使用read_csv读取文件时产生错误:EOF inside string starting at line

解决方法:使用参数 quoting

df = pd.read_csv(csvfile, header = None, delimiter="\t", quoting=csv.QUOTE_NONE, encoding='utf-8')

看完这篇关于Pandas中read_csv()读取文件跳过报错行怎么办的文章,如果觉得文章内容写得不错的话,可以把它分享出去给更多人看到。

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI