温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Pandas之行选择和列选择的示例分析

发布时间:2021-08-25 11:00:52 来源:亿速云 阅读:107 作者:小新 栏目:开发技术

这篇文章主要为大家展示了“Pandas之行选择和列选择的示例分析”,内容简而易懂,条理清晰,希望能够帮助大家解决疑惑,下面让小编带领大家一起研究并学习一下“Pandas之行选择和列选择的示例分析”这篇文章吧。

在刚学Pandas时,行选择和列选择非常容易混淆,在这里进行一下讨论和归纳

import pandas as pd

fandango = pd.read_csv('fandango_score_comparison.csv')

原始的数据如下(截取了一部分)

Pandas之行选择和列选择的示例分析

 行选择

Pandas进行行选择一般有三种方法:

  • 连续多行的选择用类似于python的列表切片

  • 按照指定的索引选择一行或多行,使用loc[]方法

  • 按照指定的位置选择一行多多行,使用iloc[]方法

第一种,使用类似于python的列表切片

n = fandango[1:3]

Pandas之行选择和列选择的示例分析

从结果可以看到,和python的列表切片一样,索引号从0开始,选择了索引号1和2的数据(不包括3)

 第二种,按照指定的索引选择一行或多行,使用loc[]方法

o = fandango.loc[1]

p = fandango.loc[1:3]

Pandas之行选择和列选择的示例分析

可以看到,o是一个Series,选择了索引号为1的那一行数据,注意p,它与第一种的列表索引最大的不同是包含了索引号为3的那一行数据

u = fandango.loc[[1,3]]

Pandas之行选择和列选择的示例分析

这里按照索引号选择不连续的行

第三种,按照指定的位置选择一行多多行,使用iloc[]方法

在上面的数据中,使用iloc[]和loc[]的效果是一样的,因为索引号都是从0开始并且连续不断,现在我要删除索引号为1和2的这两行

fandango_drop = fandango.drop([1,2], axis=0)

Pandas之行选择和列选择的示例分析

可以看到的确删除了两行数据

此时我仍然用loc[]来索引行号为2的那一行,就会出错

s = fandango_drop.loc[2]

Pandas之行选择和列选择的示例分析

但是,我使用iloc[]来进行一次

t = fandango_drop.iloc[2]

Pandas之行选择和列选择的示例分析

看到了吧,iloc[2]的意思是选择第三行的数据,也就是索引号为4的那一行数据,因为iloc[]的计算也是从0开始的,所以iloc[]适用于数据进行了筛选后造成索引号与原来不一致的情况

loc[]与iloc[]方法之间还有一个巨大的差别,那就是loc[]里的参数是对应的索引值即可,所以参数可以是整数,也可以是字符串。而iloc[]里的参数表示的是第几行的数据,所以只能是整数

 列选择

列选择比较简单,只要直接把列名传递过去即可,如果有多列的数据,要单独指出列名或列的索引号

第一种,选择单列,选择了电影名称那一列

q = fandango['FILM']

Pandas之行选择和列选择的示例分析

第二种,通过指定列名选择多列

r = fandango[['FILM','Metacritic']]

Pandas之行选择和列选择的示例分析

第三种,非常容易让人混淆的,通过列的索引号选择多列

v = fandango[[0,1,2]]

Pandas之行选择和列选择的示例分析

其实,列也是有一个索引号的,看到这里不禁想问,那我要选择前5列呢?我不想写一个长列表,又不想逐个写出这5列的名称,能否用切片呢?

x = fandango[[0:5]]

Pandas之行选择和列选择的示例分析

事实证明,这是不行的,更好的方法是在参数中构建一个列表

w = fandango[list(range(5))]

以上是“Pandas之行选择和列选择的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI