温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

python TF-IDF算法实现文本关键词提取

发布时间:2021-06-03 16:27:48 来源:亿速云 阅读:878 作者:Leah 栏目:开发技术

python TF-IDF算法实现文本关键词提取?相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

TF-IDF算法步骤:

(1)、计算词频:

词频 = 某个词在文章中出现的次数

考虑到文章有长短之分,考虑到不同文章之间的比较,将词频进行标准化

词频 = 某个词在文章中出现的次数/文章的总词数

词频 = 某个词在文章中出现的次数/该文出现次数最多的词出现的次数

(2)、计算逆文档频率

需要一个语料库(corpus)来模拟语言的使用环境。

逆文档频率 = log(语料库的文档总数/(包含该词的文档数 + 1))

(3)、计算TF-IDF

TF-IDF = 词频(TF)* 逆文档频率(IDF)

详细代码如下:

#!/usr/bin/env python
#-*- coding:utf-8 -*-
 
'''
计算文档的TF-IDF
'''
import codecs
import os
import math
import shutil
 
#读取文本文件
def readtxt(path):
 with codecs.open(path,"r",encoding="utf-8") as f:
  content = f.read().strip()
 return content
 
#统计词频
def count_word(content):
 word_dic ={}
 words_list = content.split("/")
 del_word = ["\r\n","/s"," ","/n"]
 for word in words_list:
  if word not in del_word:
   if word in word_dic:
    word_dic[word] = word_dic[word]+1
   else:
    word_dic[word] = 1
 return word_dic
 
#遍历文件夹
def funfolder(path):
 filesArray = []
 for root,dirs,files in os.walk(path):
  for file in files:
   each_file = str(root+"//"+file)
   filesArray.append(each_file)
 return filesArray
 
 
#计算TF-IDF
def count_tfidf(word_dic,words_dic,files_Array):
 word_idf={}
 word_tfidf = {}
 num_files = len(files_Array)
 for word in word_dic:
  for words in words_dic:
   if word in words:
    if word in word_idf:
     word_idf[word] = word_idf[word] + 1
    else:
     word_idf[word] = 1
 for key,value in word_dic.items():
  if key !=" ":
   word_tfidf[key] = value * math.log(num_files/(word_idf[key]+1))
 
 #降序排序
 values_list = sorted(word_tfidf.items(),key = lambda item:item[1],reverse=True)
 return values_list
 
#新建文件夹
def buildfolder(path):
 if os.path.exists(path):
  shutil.rmtree(path)
 os.makedirs(path)
 print("成功创建文件夹!")
 
#写入文件
def out_file(path,content_list):
 with codecs.open(path,"a",encoding="utf-8") as f:
  for content in content_list:
   f.write(str(content[0]) + ":" + str(content[1])+"\r\n")
 print("well done!")
 
def main():
 #遍历文件夹
 folder_path = r"分词结果"
 files_array = funfolder(folder_path)
 #生成语料库
 files_dic = []
 for file_path in files_array:
  file = readtxt(file_path)
  word_dic = count_word(file)
  files_dic.append(word_dic)
 #新建文件夹
 new_folder = r"tfidf计算结果"
 buildfolder(new_folder)
 
 #计算tf-idf,并将结果存入txt
 i=0
 for file in files_dic:
  tf_idf = count_tfidf(file,files_dic,files_array)
  files_path = files_array[i].split("//")
  #print(files_path)
  outfile_name = files_path[1]
  #print(outfile_name)
  out_path = r"%s//%s_tfidf.txt"%(new_folder,outfile_name)
  out_file(out_path,tf_idf)
  i=i+1
 
if __name__ == '__main__':
 main()

看完上述内容,你们掌握python TF-IDF算法实现文本关键词提取的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI