小编给大家分享一下python如何使用插值法绘制平滑曲线,希望大家阅读完这篇文章之后都有所收获,下面让我们一起去探讨吧!
具体内容如下
原图:
平滑处理后:
代码实现如下:
# 1. 随机构造数据 import numpy as np x = range(10) y = np.random.randint(10,size=10) # 2. 绘制原图 import matplotlib as mpl import matplotlib.pyplot as plt %matplotlib inline # jupyter notebook显示绘图 from scipy.interpolate import spline # 借助scipy库 plt.plot(x, y) plt.show() # 3. 绘制平滑曲线 from scipy.interpolate import spline # 插值法,50表示插值个数,个数>=实际数据个数,一般来说差值个数越多,曲线越平滑 x_new = np.linspace(min(x),max(x),50) y_smooth = spline(x, y, x_new) plt.plot(x_new, y_smooth) plt.show()
以上经过平滑后的曲线可能和原图差距很大,这个主要看数据本身的规律性。如果数据本身比较杂乱无章,如下:
则平滑后为:
平滑后曲线和原图还是差得很远的,因此该方法慎用,不是万能的。
python常用的库:1.requesuts;2.scrapy;3.pillow;4.twisted;5.numpy;6.matplotlib;7.pygama;8.ipyhton等。
看完了这篇文章,相信你对“python如何使用插值法绘制平滑曲线”有了一定的了解,如果想了解更多相关知识,欢迎关注亿速云行业资讯频道,感谢各位的阅读!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。