这篇文章主要介绍Python如何使用比较文本相似性的方法difflib和Levenshtein,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!
最近工作需要用到序列匹配,检测相似性,不过有点复杂的是输入长度是不固定的,举例为:
input_and_output = [1, 2, '你好', 世界', 12.34, 45.6, -21, '中国', '美丽']
其中,需要从input_and_output 中选取不固定长度的一段作为输入,且顺序不定,然后去与总体进行比较,找出最符合的,开始是对汉字进行数值化编码,不过后来由于出现汉字越来越多,遂放弃该方法,转向别的方式,查找资料发现了两个python包广被推荐,从下面来看各有优缺点,记录之~
1、difflib
import difflib #python 自带库,不需额外安装 In [49]: test1 Out[49]: ['你好', '我是谁'] In [50]: test2 Out[50]: ['你好啊', '我谁'] In [51]: test3 Out[51]: [12, 'nihao'] In [52]: test4 Out[52]: ['你好', 'woshi'] In [53]: difflib.SequenceMatcher(a=test1, b=test2).quick_ratio() Out[53]: 0.0 In [54]: difflib.SequenceMatcher(a=test1, b=test4).ratio() Out[54]: 0.5
2、Levenshtein
#pip install python-Levenshtein import Levenshtein In [56]: Levenshtein.distance(','.join(test1), ','.join(test2)) Out[56]: 2 In [57]: Levenshtein.distance(','.join(test1), ','.join(test4)) Out[57]: 5
简单来说,difflib使用时不一定为字符串,但匹配时只有单个元素完全匹配才计入,
而Levenshtein则需要输入为字符串,匹配时是整体匹配
以上是“Python如何使用比较文本相似性的方法difflib和Levenshtein”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。