本篇内容主要讲解“怎么用Python显示点过的外卖”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“怎么用Python显示点过的外卖”吧!
通过手机&验证码登录自己的饿了么账号,成功之后会返回当前用户的user_id 和 登录Cookie。这两个信息为后续的请求提供必要的信息。
一开始访问订单,是这样的请求
h6.ele.me/restapi/bos/v2/users/26803312/orders?limit=8&offset=0
h6.ele.me/restapi/bos/v2/users/26803312/orders?limit=8&offset=8
h6.ele.me/restapi/bos/v2/users/26803312/orders?limit=8&offset=16
当继续下拉,出现"查看三个月前的外卖订单"按钮时,请求是这样的
h6.ele.me/restapi/bos/v2/users/26803312/old_orders?limit=8&from_time=
h6.ele.me/restapi/bos/v2/users/26803312/old_orders?limit=8&from_time=1557718107
from_time的值在上次请求的响应中可以看到:
获取订单部分代码如下所示:
""" 获取近3个月订单 """ def get_new_order(): num = 0 while 1: # 偏移量 offset = num * limit response = requests.get(url + f'?limit={limit}&offset={offset}', headers=headers, verify=False) resp_json = response.json() insert_mongo(resp_json) # 当响应订单数小于8时 跳出循环 if len(resp_json) < 8: print('====================') break num += 1 """ 历史订单 """ def history_order(): from_time = '' while 1: response = requests.get(old_url + f'?limit={limit}&from_time={from_time}', headers=headers, verify=False) resp_json = response.json() from_time = resp_json['from_time'] orders = resp_json['orders'] # 经过测试,最后一个订单时,会在请求一次 响应为空 if not orders: break insert_mongo(orders)
运行之后发现,这一年多的时间,光外卖竟然花费了1W多一点。爬取的数据可以选择将数据保存在csv文件中,也可以选择Mongod。这里我是插入到了MongoDB中。
def insert_mongo(resp_json): if not resp_json: return for i in resp_json: # 菜品 foods_group = i['basket']['group'][0] for j in foods_group: j['name'] = clean_data(j['name']) with open('foods_name_banxia.txt', 'a+') as f: f.write(j['name'] + '\n') # 将菜品写入文件,方便处理 # 配送费 deliver_price = 0 if 'deliver_fee' in i['basket'].keys(): deliver_price = i['basket']['deliver_fee']['price'] # 计算总花费 global total total += i['total_amount'] # 餐馆名 restaurant_name = clean_data(i['restaurant_name']) with open('restaurant_name_banxia.txt', 'a+') as f: f.write(restaurant_name + '\n') # 记录餐馆名 clo.insert_one({ # 餐馆名 'restaurant_name': restaurant_name, # 订单时间 formatted_created_at也可以取,但是近期的会显示xx小时之前 'created_timestamp': time_convert(i['created_timestamp']), # 价格 'total_amount': i['total_amount'], 'foods_group': foods_group, 'deliver_price': deliver_price })
在查看数据过程中,发现有的菜品和店铺名后面都有括号、或者方括号等特殊字符,里面的信息对我们来说也没有什么价值。可以简单的进行处理一下。
import re def clean_data(data): a = re.sub("\\(.*?\\)|\\(.*?\\)|\\[.*?\\]|\\【.*?\\】|[A-Za-z0-9\@\\!\/]", "", data) a = a.replace('盒', '').replace('克', '').replace('个', '')\ .replace('大份', '').replace('小份', '').replace('瓶', '').replace('组', '').replace(' ','') return a
这样,我们就将订单中的信息存在了数据库中。为了方便统计我将每个订单的菜品、以及餐馆名保存在了txt文件中。
可以通过wordcloud将餐品进行一个简单的可视化。
from random import randint from matplotlib import pyplot as plt from wordcloud import WordCloud def random_color(word=None, font_size=None, position=None, orientation=None, font_path=None, random_state=None): """Random Color func""" r = randint(30, 255) g = randint(30, 180) b = int(100.0 * float(randint(60, 120)) / 255.0) return "rgb({:.0f}, {:.0f}, {:.0f})".format(r, g, b) content = open('foods_name.txt', encoding='utf-8').read() wordcloud = WordCloud(background_color="white", width=1000, height=600, max_font_size=50, font_path='/System/Library/Fonts/PingFang.ttc', # 需要根据实际操作系统更换路径 color_func=random_color).generate(content) plt.imshow(wordcloud) plt.axis("off") plt.savefig('ele_wordcloud.png', format='png', dpi=200)
结果如下,有没有口味一样的同学呢?
同样我们可以在终端通过sort命令去常光顾的餐馆进行统计。
sort -n 按照数值大小排序 升序
sort -r 降序排列
uniq -c 去重和统计
head -5 展示前5条
cat mao_out.txt | sort | uniq -c | sort -rg | head -5
结果如下 去的最多的是贡贡米线和张亮麻辣烫,统计范围内均光顾了14次。
Python3XXXAir:$ cat restaurant_name.txt |sort|uniq -c| sort -rg| head -5 14 贡贡米线 14 张亮麻辣烫 13 京客隆 11 沁香缘家常菜 11 小巷麻辣香锅
可以通过matplotlib去统计一下每次定外卖的价格,并展示出来。
import pymongo import matplotlib.pyplot as plt client = pymongo.MongoClient('mongodb://localhost:27017/') db = client['ele'] clo = db['info_banxia'] result = clo.find({}) y = [i['total_amount'] for i in result] x = [i for i in range(len(y))] plt.ylabel("The unit price") plt.xlabel("Times") plt.plot(x, y) plt.show()
结果图:
可以看出,大部分价格在20 ~ 40 之间, 因为有时候为了满减,大部分都是跟同事朋友一起拼单。偶尔超过这个范围是买的水果、药等一些商品。
从这些数据中,我们同样得出,哪个月定外卖次数最为频繁。
# 该月定外卖次数 count = [] for i in data: ele_count = clo.count({'created_timestamp': re.compile(i)}) count.append(ele_count) plt.scatter(data, count) plt.xticks(rotation=45) plt.show()
可以看出 18年3月定了22次外卖是最多的一次。11月份的时候定外卖次数最少。
到此,相信大家对“怎么用Python显示点过的外卖”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。