今天就跟大家聊聊有关怎么在tensorflow中读取tfrecord文件,可能很多人都不太了解,为了让大家更加了解,小编给大家总结了以下内容,希望大家根据这篇文章可以有所收获。
1、生成tfrecord文件
import os
import numpy as np
import tensorflow as tf
from PIL import Image
filenames = [
'images/cat/1.jpg',
'images/cat/2.jpg',
'images/dog/1.jpg',
'images/dog/2.jpg',
'images/pig/1.jpg',
'images/pig/2.jpg',]
labels = {'cat':0, 'dog':1, 'pig':2}
def int64_feature(values):
if not isinstance(values, (tuple, list)):
values = [values]
return tf.train.Feature(int64_list=tf.train.Int64List(value=values))
def bytes_feature(values):
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values]))
with tf.Session() as sess:
output_filename = os.path.join('images/train.tfrecords')
with tf.python_io.TFRecordWriter(output_filename) as tfrecord_writer:
for filename in filenames:
#读取图像
image_data = Image.open(filename)
#图像灰度化
image_data = np.array(image_data.convert('L'))
#将图像转化为bytes
image_data = image_data.tobytes()
#读取label
label = labels[filename.split('/')[-2]]
#生成protocol数据类型
example = tf.train.Example(features=tf.train.Features(feature={'image': bytes_feature(image_data),
'label': int64_feature(label)}))
tfrecord_writer.write(example.SerializeToString())
2、读取tfrecord文件
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
# 根据文件名生成一个队列
filename_queue = tf.train.string_input_producer(['images/train.tfrecords'])
reader = tf.TFRecordReader()
# 返回文件名和文件
_, serialized_example = reader.read(filename_queue)
features = tf.parse_single_example(serialized_example,
features={'image': tf.FixedLenFeature([], tf.string),
'label': tf.FixedLenFeature([], tf.int64)})
# 获取图像数据
image = tf.decode_raw(features['image'], tf.uint8)
# 恢复图像原始尺寸[高,宽]
image = tf.reshape(image, [60, 160])
# 获取label
label = tf.cast(features['label'], tf.int32)
with tf.Session() as sess:
# 创建一个协调器,管理线程
coord = tf.train.Coordinator()
# 启动QueueRunner, 此时文件名队列已经进队
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
for i in range(6):
image_b, label_b = sess.run([image, label])
img = Image.fromarray(image_b, 'L')
plt.imshow(img)
plt.axis('off')
plt.show()
print(label_b)
# 通知其他线程关闭
coord.request_stop()
# 其他所有线程关闭之后,这一函数才能返回
coord.join(threads)
看完上述内容,你们对怎么在tensorflow中读取tfrecord文件有进一步的了解吗?如果还想了解更多知识或者相关内容,请关注亿速云行业资讯频道,感谢大家的支持。
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。