这篇文章将为大家详细讲解有关Python中Pytorch怎么使用,小编觉得挺实用的,因此分享给大家做个参考,希望大家阅读完这篇文章后可以有所收获。
Tensor(张量是一个统称,其中包括很多类型):
0阶张量:标量、常数、0-D Tensor;1阶张量:向量、1-D Tensor;2阶张量:矩阵、2-D Tensor;……
import torch t = torch.Tensor([1, 2, 3]) print(t)
两者之间可以相互转化
import torch import numpy as np t1 = np.array(torch.Tensor([[1, 2, 3], [1, 2, 3]])) t2 = torch.Tensor(np.array([[1, 2, 3], [1, 2, 3]]))
运行结果:
torch.empty(x,y)
创建x行y列为空的tensor。
torch.ones([x, y])
创建x行y列全为1的tensor。
torch.zeros([x,y])
创建x行y列全为0的temsor。
zeros与empty的区别
后者的数据类型是不固定的。
torch.rand(x, y)
创建3行4列的随机数,随机数是0-1。
torch.randint(low, high, size)
创建一个size的tensor,随机数为low到high之间。
torch.randn([x, y])
创建一个x行y列的tensor,随机数的分布式均值为0,方差1。
item():
获取tensor中的元素,注意只有
一个元素
的时候才可以用。
numpy():
转化成
ndarray
类型。
size()
获取tensor的
形状
。
view()
可以传参,表示获取第几个。若参数为-1,表示不确定,与另一个参数的乘积等于原始形状的乘积。 例如:原始形状为8,则
浅拷贝
,tensor的形状改变
。view(-1,2)
⇒view(4, 2)
; 参数只有-1,表示一维。
dim()
获取维度。
max()
获取最大值。
t()
转置。
transpose(x,y)
x,y是size里面返回的形状相换。
permute()
传入size()返回的形状的顺序。
transpose与permute的区别
前者传入列即可相互交换;后者传入列会根据传入的顺序来进行转化,且需要传入所有列数的索引。
取值[第一阶, 第二阶,……]
一个逗号隔开代表一个阶乘冒号代表全取
赋值[第一阶, 第二阶,……]
直接赋值即可
tensor.dtype
获取数据类型
设置数据类型
注意使用
Tensor()
不能指定数据类型。
type()
修改
数据类型。
torch.add(x, y)
将x和y
相加
。
直接相加
tensor.add()
使用add_()
可相加后直接保存在tensor中
tensor + 数值
CUDA
(Compute Unified Device Architecture),是NVIDIA推出的运算平台。CUDATM是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题。
torch.cuda这个模块增加了对CUDA tensor的支持,能够在cpu和gpu上使用相同的方法操作tensor通过.to
方法能够把一个tensor转移到另外一个设备(比如从CPU转到GPU)
可以使用torch.cuda.is_available()
判断电脑是否支持GPU
1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单
关于“Python中Pytorch怎么使用”这篇文章就分享到这里了,希望以上内容可以对大家有一定的帮助,使各位可以学到更多知识,如果觉得文章不错,请把它分享出去让更多的人看到。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。