小编给大家分享一下PyTorch中inplace字段的示例分析,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!
torch.nn.ReLU(inplace=True)
inplace=True
表示进行原地操作,对上一层传递下来的tensor直接进行修改,如x=x+3;
inplace=False
表示新建一个变量存储操作结果,如y=x+3,x=y;
inplace=True
可以节省运算内存,不用多存储变量。
补充:PyTorch中网络里面的inplace=True字段的意思
在例如nn.LeakyReLU(inplace=True)中的inplace字段是什么意思呢?有什么用?
inplace=True的意思是进行原地操作,例如x=x+5,对x就是一个原地操作,y=x+5,x=y,完成了与x=x+5同样的功能但是不是原地操作。
上面LeakyReLU中的inplace=True的含义是一样的,是对于Conv2d这样的上层网络传递下来的tensor直接进行修改,好处就是可以节省运算内存,不用多储存变量y。
inplace=True means that it will modify the input directly, without allocating any additional output. It can sometimes slightly decrease the memory usage, but may not always be a valid operation (because the original input is destroyed). However, if you don't see an error, it means that your use case is valid.
1.PyTorch是相当简洁且高效快速的框架;2.设计追求最少的封装;3.设计符合人类思维,它让用户尽可能地专注于实现自己的想法;4.与google的Tensorflow类似,FAIR的支持足以确保PyTorch获得持续的开发更新;5.PyTorch作者亲自维护的论坛 供用户交流和求教问题6.入门简单
以上是“PyTorch中inplace字段的示例分析”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。