温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

解读tensorflow权重文件的方法

发布时间:2021-05-27 09:54:47 来源:亿速云 阅读:460 作者:小新 栏目:开发技术

小编给大家分享一下解读tensorflow权重文件的方法,相信大部分人都还不怎么了解,因此分享这篇文章给大家参考一下,希望大家阅读完这篇文章后大有收获,下面让我们一起去了解一下吧!

1.解读tensorflow权重文件,透过 tf.train.NewCheckpointReader函数。

2.reader.get_variable_to_shape_map()可以得到权重文件里面的tensor名称。

3.reader.get_tensor(key) 可以得到对应tensor的权重值。

解读tensorflow权重文件的方法

import tensorflow as tf
cpktFileName = r'.\models\resnet_v2_152.ckpt'
reader = tf.train.NewCheckpointReader(cpktFileName)
for key in sorted(reader.get_variable_to_shape_map()):
   
    if key.endswith('weights') or key.endswith('biases'):
        keySplits = key.split(r'/')
        print(key)
        print(reader.get_tensor(key))

resnet_v2_152权重 tensor name解读

第一,每个tensor name都以resnet_v2_152开头

第二,tensor name第二段为block,共有四个block。与网络架构有关。

第三,第三字段为unit,每个block里面unit数量不同。与网络架构有关。

第四,除了组后的平坦层,第四字段都为bottleneck_v2

第五,第五字段为‘conv1',‘conv2',‘conv3',‘shortcut'

第六,第六字段为‘weights' or ‘biases'

解读tensorflow权重文件的方法

补充:tensorflow模型的调用,权重查看

以vc版本的tensorpack说明

模型调用

每次运行,会有checkpoint、graph、model生成

1、其中,若文件夹已经有checkpoint,且写有自动掉用上次模型,可以在上次的基础上继续训练,否则重新生成,且不能调用之前的模型,即使已经存在

2、每次运行会重新生成graph,即使上次的已经存在,因此调用上次模型与文件夹中是否有graph无关

权重变量查看

import numpy as np
import tensorflow as tf
import sys
model = sys.argv[1]
tensor = sys.argv[2]
reader = tf.train.NewCheckpointReader(model)
all_variables = reader.get_variable_to_shape_map()
#reader = pywrap_tensorflow.NewCheckpointReader(ckpt_path)
#param_dict = reader.get_variable_to_shape_map()
for key, val in all_variables.items():
    try:
        print key, val
        #key是网络参数名,val是维度
    except:
        pass
w0 = reader.get_tensor(tensor)
np.save('con1d_w.npy',w0)
print(type(w0))
print(w0.shape)
print(w0[0])

文件内容

chekpoint—记录了保存的最新的checkpoint文件以及其它checkpoint文件列表。在inference时,可以通过修改这个文件,指定使用哪个model

解读tensorflow权重文件的方法

MyModel.meta文件保存的是图结构,meta文件是pb(protocol buffer)格式文件,包含变量、op、集合等。

ckpt文件是二进制文件,保存了所有的weights、biases、gradients等变量。在tensorflow 0.11之前,保存在.ckpt文件中。0.11后,通过两个文件保存,如:

MyModel.data-00000-of-00001
MyModel.index

以上是“解读tensorflow权重文件的方法”这篇文章的所有内容,感谢各位的阅读!相信大家都有了一定的了解,希望分享的内容对大家有所帮助,如果还想学习更多知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI