温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

spark mllib 预测之LinearRegression的示例分析

发布时间:2021-12-16 14:42:28 来源:亿速云 阅读:170 作者:小新 栏目:云计算

这篇文章主要介绍spark mllib 预测之LinearRegression的示例分析,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

商品价格与消费者输入之间的关系

商品需求(y, 吨),价格(x1, 元),消费者收入(x2, 元)

yx1x2
511
812
721
1323
1834

建立需求函数: y = ax1+bx2

运行代码如下

package spark.regressionAnalysis

/**
  * 线性回归, 建立商品价格与消费者输入之间的关系,
  * 预测价格
  */

import org.apache.log4j.{Level, Logger}
import org.apache.spark.mllib.linalg.Vectors
import org.apache.spark.mllib.regression.{LabeledPoint, LinearRegressionWithSGD}
import org.apache.spark.{SparkConf, SparkContext}

object LinearRegression {
  val conf = new SparkConf()     //创建环境变量
    .setMaster("local")        //设置本地化处理
    .setAppName("LinearRegression")//设定名称
  val sc = new SparkContext(conf)  //创建环境变量实例

  def main(args: Array[String]) {
    val data = sc.textFile("./src/main/spark/regressionAnalysis/lr.txt")//获取数据集路径
    val parsedData = data.map { line =>	 //开始对数据集处理
        val parts = line.split('|') //根据逗号进行分区
        LabeledPoint(parts(0).toDouble, Vectors.dense(parts(1).split(',').map(_.toDouble)))
      }.cache() //转化数据格式

    //LabeledPoint, numIterations, stepSize
    val model = LinearRegressionWithSGD.train(parsedData, 2, 0.1) //建立模型

    val result = model.predict(Vectors.dense(1, 3))//通过模型预测模型
    println(model.weights)
    println(model.weights.size)
    println(result)	//打印预测结果
  }
}

lr.txt

5|1,1
8|1,2
7|2,1
13|2,3
18|3,4

结果如图

spark mllib 预测之LinearRegression的示例分析

以上是“spark mllib 预测之LinearRegression的示例分析”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI