温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Spark2.2.0中RDD转DataFrame的方式是怎样的

发布时间:2021-12-16 20:32:58 来源:亿速云 阅读:161 作者:柒染 栏目:大数据

Spark2.2.0中RDD转DataFrame的方式是怎样的,相信很多没有经验的人对此束手无策,为此本文总结了问题出现的原因和解决方法,通过这篇文章希望你能解决这个问题。

Spark SQL将现有的RDDs转换为数据集。

方法:使用反射来推断包含特定对象类型的RDD的模式。这种基于反射的方法使代码更加简洁,并且当您在编写Spark应用程序时已经了解了模式时,它可以很好地工作。

第一种方法代码实例java版本实现:

    数据准备studentDatatxt

1001,20,zhangsan1002,17,lisi1003,24,wangwu1004,16,zhaogang

    本地模式代码实现:

package com.unicom.ljs.spark220.study;
import org.apache.spark.SparkConf;import org.apache.spark.api.java.JavaRDD;import org.apache.spark.api.java.JavaSparkContext;import org.apache.spark.api.java.function.Function;import org.apache.spark.api.java.function.VoidFunction;import org.apache.spark.sql.Dataset;import org.apache.spark.sql.Row;import org.apache.spark.sql.SQLContext;
/** * @author: Created By lujisen * @company ChinaUnicom Software JiNan * @date: 2020-01-20 08:58 * @version: v1.0 * @description: com.unicom.ljs.spark220.study */public class RDD2DataFrameReflect {    public static void main(String[] args) {        SparkConf sparkConf = new SparkConf().setMaster("local[*]").setAppName("RDD2DataFrameReflect");        JavaSparkContext sc = new JavaSparkContext(sparkConf);        SQLContext sqlContext=new SQLContext(sc);
       JavaRDD<String> lines = sc.textFile("C:\\Users\\Administrator\\Desktop\\studentData.txt");        JavaRDD<Student2> studentRDD = lines.map(new Function<String, Student2>() {            @Override            public Student2 call(String line) throws Exception {                String[] split = line.split(",");                Student2 student=new Student2();                student.setId(Integer.valueOf(split[0]));                student.setAge(Integer.valueOf(split[1]));                student.setName(split[2]);                return student;            }        });        //使用反射方式将RDD转换成dataFrame        //将Student.calss传递进去,其实就是利用反射的方式来创建DataFrame        Dataset<Row> dataFrame = sqlContext.createDataFrame(studentRDD, Student2.class);        //拿到DataFrame之后将其注册为临时表,然后针对其中的数据执行SQL语句        dataFrame.registerTempTable("studentTable");
       //针对student临时表,执行sql语句查询年龄小于18岁的学生,        /*DataFrame rowDF */        Dataset<Row> dataset = sqlContext.sql("select * from  studentTable where age < 18");        JavaRDD<Row> rowJavaRDD = dataset.toJavaRDD();        JavaRDD<Student2> ageRDD = rowJavaRDD.map(new Function<Row, Student2>() {            @Override            public Student2 call(Row row) throws Exception {                Student2 student = new Student2();                student.setId(row.getInt(0));                student.setAge(row.getInt(1));                student.setName(row.getString(2));
               return student;            }        });        ageRDD.foreach(new VoidFunction<Student2>() {            @Override            public void call(Student2 student) throws Exception {                System.out.println(student.toString());            }        });    }}

Student2类:

package com.unicom.ljs.spark220.study;
import java.io.Serializable;
/** * @author: Created By lujisen * @company ChinaUnicom Software JiNan * @date: 2020-01-20 08:57 * @version: v1.0 * @description: com.unicom.ljs.spark220.study */public class Student2 implements Serializable {    int  id;    int  age;    String name;
   public int getId() {        return id;    }
   public void setId(int id) {        this.id = id;    }
   public int getAge() {        return age;    }
   public void setAge(int age) {        this.age = age;    }
   public String getName() {        return name;    }
   public void setName(String name) {        this.name = name;    }
   @Override    public String toString() {        return "Student2{" +                "id=" + id +                ", age=" + age +                ", name='" + name + '\'' +                '}';    }}

pom.xml关键依赖:

<spark.version>2.2.0</spark.version>
<scala.version>2.11.8</scala.version>
<dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-sql_2.11</artifactId>    <version>${spark.version}</version></dependency><dependency>    <groupId>org.apache.spark</groupId>    <artifactId>spark-core_2.11</artifactId>    <version>${spark.version}</version></dependency>

看完上述内容,你们掌握Spark2.2.0中RDD转DataFrame的方式是怎样的的方法了吗?如果还想学到更多技能或想了解更多相关内容,欢迎关注亿速云行业资讯频道,感谢各位的阅读!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI