温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

Python的特征降维是什么意思

发布时间:2021-08-16 09:27:35 来源:亿速云 阅读:129 作者:chen 栏目:开发技术

本篇内容介绍了“Python的特征降维是什么意思”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!

说明

1、PCA是最经典、最实用的降维技术,尤其在辅助图形识别中表现突出。

2、用来减少数据集的维度,同时保持数据集中对方差贡献最大的特征。

保持低阶主成分,而忽略高阶成分,低阶成分往往能保留数据的最重要部分。

实例

from sklearn.feature_selection import VarianceThreshold

# 特征选择  VarianceThreshold删除低方差的特征(删除差别不大的特征)
var = VarianceThreshold(threshold=1.0)   # 将方差小于等于1.0的特征删除。 默认threshold=0.0
data = var.fit_transform([[0, 2, 0, 3], [0, 1, 4, 3], [0, 1, 1, 3]])
 
print(data)
'''
[[0]
 [4]
 [1]]
'''

内容扩展:

python实现拉普拉斯降维

def laplaEigen(dataMat,k,t): 
 m,n=shape(dataMat) 
 W=mat(zeros([m,m])) 
 D=mat(zeros([m,m])) 
 for i in range(m): 
 k_index=knn(dataMat[i,:],dataMat,k) 
 for j in range(k): 
  sqDiffVector = dataMat[i,:]-dataMat[k_index[j],:] 
  sqDiffVector=array(sqDiffVector)**2 
  sqDistances = sqDiffVector.sum() 
  W[i,k_index[j]]=math.exp(-sqDistances/t) 
  D[i,i]+=W[i,k_index[j]] 
 L=D-W 
 Dinv=np.linalg.inv(D) 
 X=np.dot(D.I,L) 
 lamda,f=np.linalg.eig(X) 
return lamda,f 
def knn(inX, dataSet, k): 
 dataSetSize = dataSet.shape[0] 
 diffMat = tile(inX, (dataSetSize,1)) - dataSet 
 sqDiffMat = array(diffMat)**2 
 sqDistances = sqDiffMat.sum(axis=1) 
 distances = sqDistances**0.5 
 sortedDistIndicies = distances.argsort() 
return sortedDistIndicies[0:k] 
dataMat, color = make_swiss_roll(n_samples=2000) 
lamda,f=laplaEigen(dataMat,11,5.0) 
fm,fn =shape(f) 
print 'fm,fn:',fm,fn 
lamdaIndicies = argsort(lamda) 
first=0 
second=0 
print lamdaIndicies[0], lamdaIndicies[1] 
for i in range(fm): 
 if lamda[lamdaIndicies[i]].real>1e-5: 
 print lamda[lamdaIndicies[i]] 
 first=lamdaIndicies[i] 
 second=lamdaIndicies[i+1] 
 break 
print first, second 
redEigVects = f[:,lamdaIndicies] 
fig=plt.figure('origin') 
ax1 = fig.add_subplot(111, projection='3d') 
ax1.scatter(dataMat[:, 0], dataMat[:, 1], dataMat[:, 2], c=color,cmap=plt.cm.Spectral) 
fig=plt.figure('lowdata') 
ax2 = fig.add_subplot(111) 
ax2.scatter(f[:,first], f[:,second], c=color, cmap=plt.cm.Spectral) 
plt.show()

“Python的特征降维是什么意思”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!

向AI问一下细节

免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

AI