温馨提示×

温馨提示×

您好,登录后才能下订单哦!

密码登录×
登录注册×
其他方式登录
点击 登录注册 即表示同意《亿速云用户服务条款》

基于OpenMV如何实现数字识别功能

发布时间:2022-03-04 14:07:51 来源:亿速云 阅读:575 作者:小新 栏目:开发技术

这篇文章主要介绍基于OpenMV如何实现数字识别功能,文中介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们一定要看完!

    基于OpenMV的图像识别

    OpenMV简介

    什么是OpenMV

    OpenMV是由美国克里斯团队基于MicroPython发起的开源机器视觉项目,目的是创建低成本,可扩展,使用python驱动的机器视觉模块。OpenMV搭载了MicroPython解释器,使其可以在嵌入式端进行python开发,关于MicroPython可以参照我之前的博客专栏:MicroPython. OpenMV基于32位,ARM Cortex-M7内核的OpenMV-H7, 并结合各种摄像头,可以进行多种机器视觉应用的实现,比如人脸检测,物体分类等。

    OpenMV是一个开源,低成本,功能强大的机器视觉模块,以STM32F427CPU为核心,集成了OV7725摄像头芯片,在小巧的硬件模块上,用C语言高效地实现了核心机器视觉算法,提供Python编程接口 。同时 OpenMV也是一个可编程的摄像头,通过Python语言可实现你想要的逻辑。而且摄像头本身也内置了一些图像处理的算法,使用起来也更加的方便,仅需要写一些简单的Python代码,即可轻松的完成各种机器视觉相关的任务。在此,我们通过OpenMV实现了数字识别。

    在打开OpenMV摄像头链接电脑时,会弹出让你升级的窗口

    这时切忌一定要选择Cancel键,

    不能选择升级!!!

    不能选择升级!!!

    不能选择升级!!!

    基于OpenMV如何实现数字识别功能

    然后在进行下一步的操作

    OpenMV中文入门视频教程

    一、数字识别

    数字识别的基础是需要配置使用NCC模板匹配。通过NCC模板的匹配可把

    需要识别的数字模板图片保存到SD卡中,然后可进行下一步的识别。

    1、可以通过打开模板匹配的历程来直接打开代码进行使用

    基于OpenMV如何实现数字识别功能

    基于OpenMV如何实现数字识别功能

    2、如果运行出现这个窗口就说明没有保存模板图片

    基于OpenMV如何实现数字识别功能

    所以这时就需要创建一个模板图片:创建模板图片的详细视频教程

    创建一个模板图片首先要打开一个helloworld历程文件

    基于OpenMV如何实现数字识别功能

    基于OpenMV如何实现数字识别功能

    然后在helloworld历程文件中进行匹配0~9这样的基本数字,对这些数字进

    行一一截取,用它们来作为我们的模板图片。

    在右边的Frame Buffer框中进行截取,注意:不要点Zoom,因为Zoom展示

    的是放大后的效果,在识别时可能会导致失帧。

    然后点击左键选出一个框(如图所示)

    基于OpenMV如何实现数字识别功能

    选完框后点击右键选择Save Image selection to PC

    基于OpenMV如何实现数字识别功能

    最后把截取的数字图片进行保存,一定要保存到OpenMV的SD卡中,保存的文件名可自己

    定义

    基于OpenMV如何实现数字识别功能

    3、把template.pgm改为你创建的模板图片的名称

    基于OpenMV如何实现数字识别功能

    (注意:模板图片的格式一定要是pgm的格式,转换格式可以在

    https://convertio.co/zh/bmp-pgm/网站直接进行转换)

    4、改完之后就可以运行

    下面展示一些 有关数字识别的代码。

    此代码为源代码,可根据自己的需求在上面进行改动。

    代码来源:数字识别代码,可直接引用并修改

    # Template Matching Example - Normalized Cross Correlation (NCC)
    #
    # This example shows off how to use the NCC feature of your OpenMV Cam to match
    # image patches to parts of an image... expect for extremely controlled enviorments
    # NCC is not all to useful.
    #
    # WARNING: NCC supports needs to be reworked! As of right now this feature needs
    # a lot of work to be made into somethin useful. This script will reamin to show
    # that the functionality exists, but, in its current state is inadequate.
    
    import time, sensor, image
    from image import SEARCH_EX, SEARCH_DS
    
    # Reset sensor
    sensor.reset()
    
    # Set sensor settings
    sensor.set_contrast(1)
    sensor.set_gainceiling(16)
    # Max resolution for template matching with SEARCH_EX is QQVGA
    sensor.set_framesize(sensor.QQVGA)
    # You can set windowing to reduce the search image.
    #sensor.set_windowing(((640-80)//2, (480-60)//2, 80, 60))
    sensor.set_pixformat(sensor.GRAYSCALE)
    
    # Load template.
    # Template should be a small (eg. 32x32 pixels) grayscale image.
    template8 = image.Image("/8.pgm")
    template9 = image.Image("/9.pgm")
    clock = time.clock()
    
    # Run template matching
    while (True):
        clock.tick()
        img = sensor.snapshot()
    
        # find_template(template, threshold, [roi, step, search])
        # ROI: The region of interest tuple (x, y, w, h).
        # Step: The loop step used (y+=step, x+=step) use a bigger step to make it faster.
        # Search is either image.SEARCH_EX for exhaustive search or image.SEARCH_DS for diamond search
        #
        # Note1: ROI has to be smaller than the image and bigger than the template.
        # Note2: In diamond search, step and ROI are both ignored.
        r 8= img.find_template(template8, 0.70, step=4, search=SEARCH_EX) #, roi=(10, 0, 60, 60))
        if r8:
            img.draw_rectangle(r8)
       r 9= img.find_template(template9, 0.70, step=4, search=SEARCH_EX) #, roi=(10, 0, 60, 60))
        if r9:
            img.draw_rectangle(r9)
    
        print(clock.fps())

    运行的结果如图所示

    基于OpenMV如何实现数字识别功能

    以上是“基于OpenMV如何实现数字识别功能”这篇文章的所有内容,感谢各位的阅读!希望分享的内容对大家有帮助,更多相关知识,欢迎关注亿速云行业资讯频道!

    向AI问一下细节

    免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。

    AI