本篇内容介绍了“Python cv.Canny()方法怎么使用”的有关知识,在实际案例的操作过程中,不少人都会遇到这样的困境,接下来就让小编带领大家学习一下如何处理这些情况吧!希望大家仔细阅读,能够学有所成!
OpenCV提供了cv.Canny()方法,该方法将输入的原始图像转换为边缘图像。
该方法的原型为:
cv.Canny(image, threshold1, threshold2[, edges[, apertureSize[, L2gradient]]]) -> edges cv.Canny(dx, dy, threshold1, threshold2[, edges[, L2gradient]]) -> edges
image参数是array格式的输入图像。
threshold1与threshold2分别是我们的下界阈值与上界阈值。
apertureSize是用于查找图像梯度的Sobel核的大小,默认为3。
L2gradient指定了求梯度幅值的公式,是一个布尔型变量,默认为False。当它为True时,使用L2,否则使用L1。
下面是具体代码:
def canny_detect(image_path, show=True): # 读取图像 image = cv2.imread(image_path, 0) # 获取结果 edges = cv2.Canny(image, 100, 200) if show: # 绘制原图 plt.subplot(121) plt.imshow(image, cmap='gray') plt.title('Original Image') plt.xticks([]) plt.yticks([]) # 绘制边缘图 plt.subplot(122) plt.imshow(edges, cmap='gray') plt.title('Edge Image') plt.xticks([]) plt.yticks([]) plt.show() return edges canny_detect('images/2.jpeg')
“Python cv.Canny()方法怎么使用”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识可以关注亿速云网站,小编将为大家输出更多高质量的实用文章!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。