这篇文章主要介绍了pandas中如何使用append函数,具有一定借鉴价值,感兴趣的朋友可以参考下,希望大家阅读完这篇文章之后大有收获,下面让小编带着大家一起了解一下。
append主要用于追加数据,是比较简单直接的数据合并方式。
df.append(
other,
ignore_index: 'bool' = False,
verify_integrity: 'bool' = False,
sort: 'bool' = False,
) -> 'DataFrame'
在函数方法中,各参数含义如下:
other: 用于追加的数据,可以是DataFrame或Series或组成的列表
ignore_index: 是否保留原有的索引
verify_integrity: 检测索引是否重复,如果为True则有重复索引会报错
sort: 并集合并方式下,对columns排序
接下来,我们就对该函数功能进行演示
基础追加
In [41]: df1.append(df2)
Out[41]:
letter number
0 a 1
1 b 2
0 c 3
1 d 4
In [42]: df1.append([df1,df2,df3])
Out[42]:
letter number animal
0 a 1 NaN
1 b 2 NaN
0 a 1 NaN
1 b 2 NaN
0 c 3 NaN
1 d 4 NaN
0 c 3 cat
1 d 4 dog
columns重置(不保留原有索引)
In [43]: df1.append([df1,df2,df3], ignore_index=True)
Out[43]:
letter number animal
0 a 1 NaN
1 b 2 NaN
2 a 1 NaN
3 b 2 NaN
4 c 3 NaN
5 d 4 NaN
6 c 3 cat
7 d 4 dog
检测重复
如果索引出现重复,则无法通过检测,会报错
In [44]: df1.append([df1,df2], verify_integrity=True)
Traceback (most recent call last):
...
ValueError: Indexes have overlapping values: Int64Index([0, 1], dtype='int64')
索引排序
In [46]: df1.append([df1,df2,df3], sort=True)
Out[46]:
animal letter number
0 NaN a 1
1 NaN b 2
0 NaN a 1
1 NaN b 2
0 NaN c 3
1 NaN d 4
0 cat c 3
1 dog d 4
追加Series
In [49]: s = pd.Series({'letter':'s1','number':9})
In [50]: s
Out[50]:
letter s1
number 9
dtype: object
In [51]: df1.append(s)
Traceback (most recent call last):
...
TypeError: Can only append a Series if ignore_index=True or if the Series has a name
In [53]: df1.append(s, ignore_index=True)
Out[53]:
letter number
0 a 1
1 b 2
2 s1 9
追加字典
这个在爬虫的时候比较好使,每爬取一条数据就合并到DataFrame类似数据中存储起来
In [54]: dic = {'letter':'s1','number':9}
In [55]: df1.append(dic, ignore_index=True)
Out[55]:
letter number
0 a 1
1 b 2
2 s1 9
感谢你能够认真阅读完这篇文章,希望小编分享的“pandas中如何使用append函数”这篇文章对大家有帮助,同时也希望大家多多支持亿速云,关注亿速云行业资讯频道,更多相关知识等着你来学习!
亿速云「云服务器」,即开即用、新一代英特尔至强铂金CPU、三副本存储NVMe SSD云盘,价格低至29元/月。点击查看>>
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。
原文链接:https://www.freebuf.com/articles/system/166220.html