本篇内容主要讲解“Numpy中怎么实现PCA”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Numpy中怎么实现PCA”吧!
Numpy中实现PCA
from numpy import * ''' 10.235186 11.321997 10.122339 11.810993 9.190236 8.904943 9.306371 9.847394 8.330131 8.340352 10.152785 10.123532 10.408540 10.821986 ... ... ''' def loadDataSet(fileName, delim='\t'): fr = open(fileName) stringArr = [line.strip().split(delim) for line in fr.readlines()] datArr = [map(float,line) for line in stringArr] return mat(datArr) def pca(dataMat, topNfeat=9999999): meanVals = mean(dataMat, axis=0) #计算列均值 print meanVals # [[ 9.06393644 9.09600218]] print '======' meanRemoved = dataMat - meanVals #remove mean # 每一列都减去均值 covMat = cov(meanRemoved, rowvar=0) # 计算新矩阵(减去均值)协方差 print covMat # [ [ 1.05198368 1.1246314 ] [ 1.1246314 2.21166499] ] #协方差 print '======' eigVals,eigVects = linalg.eig(mat(covMat)) #计算协方差矩阵的特征值和特征向量 print eigVals # [ 0.36651371 2.89713496] print '======' print eigVects # [ [-0.85389096 -0.52045195] [ 0.52045195 -0.85389096] ] print '======' eigValInd = argsort(eigVals) #按照特征值从大到小排序。选择topN eigValInd = eigValInd[:-(topNfeat+1):-1] redEigVects = eigVects[:,eigValInd] print redEigVects print '======' #[ [-0.52045195] [-0.85389096] ] lowDDataMat = meanRemoved * redEigVects # N x 2 * 2 x 1 ==> N x 1 即把N x 2的矩阵转化成N x 1 的矩阵,维度降到1 reconMat = (lowDDataMat * redEigVects.T) + meanVals return lowDDataMat, reconMat
均值: mean(X) = (x0 + x1 + ... + xn) / n
标准差:std = Math.sqrt([x0 - mean(x)]^2/(n-1),2)
方差:var=[x0 - mean(x)]^2/(n-1)
比如两个集合[0,8,12,20]、[8,9,11,12] 均值都是10.但是两个集合的差别很大。计算两个标准差,前者是8.3和后者是1.8.
显示后者比较集中。标准差描述了数据的“散布度”。之所以除以n-1而不是n。是因为能使我们以较小的样本更好的逼近总体的标准差。即“无偏估计”
为什么需要协方差?
标准差和方差一般是用来描述一维的数据。但是现实生活中,我们常常遇到含有二维数据的数据集。最简单的是大家上学免不了的统计多个学科的考试成绩。多维数据之间的关系。协方差就是这样一种度量两个随机变量关系的统计量
var(X) = {Math.pow(xi-mean(X),2)}/(n-1) = {xi-mean(X)}{xi-mean(X)}/(n-1)
仿照方差的定义:
cov(X,Y)= {xi-mean(X)}{yi-mean(Y)}/(n-1)
来度量各个维度偏离其均值的程度。
协方差结果的意义:
如果是正值,则说明两者是正相关,如果结果是负值,则说明两者是负相关。如果是0,表示两者没有关联,相互独立。
多维协方差:矩阵来表示
cov(x,x) cov(x,y) cov(x,z)
C=cov(y,x) cov(y,y) cov(y,z) ===> 可见协方差矩阵是一个对称矩阵,而且对角线是各个维度的方差。 是3*3
cov(z,x) cov(z,y) cov(z,z)
到此,相信大家对“Numpy中怎么实现PCA”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。