本篇内容主要讲解“Pytorch中retain_graph的坑如何解决”,感兴趣的朋友不妨来看看。本文介绍的方法操作简单快捷,实用性强。下面就让小编来带大家学习“Pytorch中retain_graph的坑如何解决”吧!
在查看SRGAN源码时有如下损失函数,其中设置了retain_graph=True,其作用就是
在更新D网络时的loss反向传播过程中使用了retain_graph=True,目的为是为保留该过程中计算的梯度,后续G网络更新时使用;
############################ # (1) Update D network: maximize D(x)-1-D(G(z)) ########################### real_img = Variable(target) if torch.cuda.is_available(): real_img = real_img.cuda() z = Variable(data) if torch.cuda.is_available(): z = z.cuda() fake_img = netG(z) netD.zero_grad() real_out = netD(real_img).mean() fake_out = netD(fake_img).mean() d_loss = 1 - real_out + fake_out d_loss.backward(retain_graph=True) ##### optimizerD.step() ############################ # (2) Update G network: minimize 1-D(G(z)) + Perception Loss + Image Loss + TV Loss ########################### netG.zero_grad() g_loss = generator_criterion(fake_out, fake_img, real_img) g_loss.backward() optimizerG.step() fake_img = netG(z) fake_out = netD(fake_img).mean() g_loss = generator_criterion(fake_out, fake_img, real_img) running_results['g_loss'] += g_loss.data[0] * batch_size d_loss = 1 - real_out + fake_out running_results['d_loss'] += d_loss.data[0] * batch_size running_results['d_score'] += real_out.data[0] * batch_size running_results['g_score'] += fake_out.data[0] * batch_size
也就是说,只要我们有一个loss,我们就可以先loss.backward(retain_graph=True) 让它先计算梯度,若下面还有其他损失,但是可能你想扩展代码,可能有些loss是不用的,所以先加了 if 等判别语句进行了干预,使用loss.backward(retain_graph=True)就可以单独的计算梯度,屡试不爽。
但是另外一个问题在于,如果你都这么用的话,显存会爆炸,因为他保留了梯度,所以都没有及时释放掉,浪费资源。
而正确的做法应该是,在你最后一个loss 后面,一定要加上loss.backward()这样的形式,也就是让最后一个loss 释放掉之前所有暂时保存下来得梯度!!
Pytorch中的机制是每次调用loss.backward()时都会free掉计算图中所有缓存的buffers,当模型中可能有多次backward()时,因为前一次调用backward()时已经释放掉了buffer,所以下一次调用时会因为buffers不存在而报错
loss.backward(retain_graph=True)
错误使用
optimizer.zero_grad()
清空过往梯度;
loss1.backward(retain_graph=True)
反向传播,计算当前梯度;
loss2.backward(retain_graph=True)
反向传播,计算当前梯度;
optimizer.step()
根据梯度更新网络参数
因为每次调用bckward时都没有将buffers释放掉,所以会导致内存溢出,迭代越来越慢(因为梯度都保存了,没有free)
正确使用
optimizer.zero_grad()
清空过往梯度;
loss1.backward(retain_graph=True)
反向传播,计算当前梯度;
loss2.backward()
反向传播,计算当前梯度;
optimizer.step()
根据梯度更新网络参数
最后一个 backward() 不要加 retain_graph 参数,这样每次更新完成后会释放占用的内存,也就不会出现越来越慢的情况了
到此,相信大家对“Pytorch中retain_graph的坑如何解决”有了更深的了解,不妨来实际操作一番吧!这里是亿速云网站,更多相关内容可以进入相关频道进行查询,关注我们,继续学习!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。