在Python中进行网络爬虫并标准化数据,通常涉及以下步骤:
requests
库发送HTTP请求以获取网页内容。import requests
url = 'http://example.com'
response = requests.get(url)
html_content = response.text
BeautifulSoup
或lxml
库解析HTML内容,提取所需数据。from bs4 import BeautifulSoup
soup = BeautifulSoup(html_content, 'html.parser')
data = soup.find_all('div', class_='item') # 假设我们要提取所有class为'item'的div元素
import re
def clean_text(text):
text = text.strip() # 去除前后空白
text = re.sub(r'\s+', ' ', text) # 将多个连续空格替换为一个空格
return text
cleaned_data = [clean_text(item.get_text()) for item in data]
data_list = [item.split(',') for item in cleaned_data] # 假设数据是以逗号分隔的字符串
import json
with open('data.json', 'w', encoding='utf-8') as f:
json.dump(data_list, f, ensure_ascii=False, indent=4)
try:
response = requests.get(url)
response.raise_for_status() # 检查请求是否成功
except requests.RequestException as e:
print(f"Error fetching URL: {e}")
else:
soup = BeautifulSoup(response.text, 'html.parser')
data = soup.find_all('div', class_='item')
cleaned_data = [clean_text(item.get_text()) for item in data]
data_list = [item.split(',') for item in cleaned_data]
with open('data.json', 'w', encoding='utf-8') as f:
json.dump(data_list, f, ensure_ascii=False, indent=4)
通过以上步骤,你可以有效地进行网络爬虫并标准化数据。根据具体需求,你可能需要调整数据清洗和转换的步骤。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。