可以通过一个简单的例子来说明MapReduce到底是什么:
我们要统计一个大文件中的各个单词出现的次数。由于文件太大。我们把这个文件切分成如果小文件,然后安排多个人去统计。这个过程就是”Map”。然后把每个人统计的数字合并起来,这个就是“Reduce"。
上面的例子如果在MapReduce去做呢,就需要创建一个任务job,由job把文件切分成若干独立的数据块,并分布在不同的机器节点中。然后通过分散在不同节点中的Map任务以完全并行的方式进行处理。MapReduce会对Map的输出地行收集,再将结果输出送给Reduce进行下一步的处理。
对于一个任务的具体执行过程,会有一个名为"JobTracker"的进程负责协调MapReduce执行过程中的所有任务。若干条TaskTracker进程用来运行单独的Map任务,并随时将任务的执行情况汇报给JobTracker。如果一个TaskTracker汇报任务失败或者长时间未对本身任务进行汇报,JobTracker会启动另外一个TaskTracker重新执行单独的Map任务。
(1)eclipse下创建相关maven项目,依赖jar包如下(也可参照hadoop源码包下的hadoop-mapreduce-examples项目的pom配置)
注意:要配置一个maven插件maven-jar-plugin,并指定mainClass
<dependencies> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.11</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-mapreduce-client-core</artifactId> <version>2.5.2</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>2.5.2</version> </dependency> </dependencies> <build> <plugins> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-jar-plugin</artifactId> <configuration> <archive> <manifest> <mainClass>com.xxx.demo.hadoop.wordcount.WordCount</mainClass> </manifest> </archive> </configuration> </plugin> </plugins> </build>
(2)根据MapReduce的运行机制,一个job至少要编写三个类分别用来完成Map逻辑、Reduce逻辑、作业调度这三件事。
Map的代码可继承org.apache.hadoop.mapreduce.Mapper类
public static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); //由于该例子未用到key的参数,所以该处key的类型就简单指定为Object public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { StringTokenizer itr = new StringTokenizer(value.toString()); while (itr.hasMoreTokens()) { word.set(itr.nextToken()); context.write(word, one); } } }
Reduce的代码可继承org.apache.hadoop.mapreduce.Reducer类
public class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } }
编写main方法进行作业调度
public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "word count"); job.setJarByClass(WordCount.class); job.setMapperClass(TokenizerMapper.class); job.setCombinerClass(IntSumReducer.class); job.setReducerClass(IntSumReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); job.waitForCompletion(true) ; //System.exit(job.waitForCompletion(true) ? 0 : 1); }
执行mvn install把项目打成jar文件然后上传到linux集群环境,使用hdfs dfs -mkdir命令在hdfs文件系统中创建相应的命令,使用hdfs dfs -put 把需要处理的数据文件上传到hdfs系统中,示例:hdfs dfs -put ${linux_path/数据文件} ${hdfs_path}
在集群环境中执行命令: hadoop jar ${linux_path}/wordcount.jar ${hdfs_input_path} ${hdfs_output_path}
hdfs dfs -cat ${hdfs_output_path}/输出文件名
以上的方式在未启动hadoop集群环境时,是以Local模式运行,此时HDFS和YARN都不起作用。下面是在伪分布式模式下执行mapreduce job时需要做的工作,先把官网上列的步骤摘录出来:
配置主机名
# vi /etc/sysconfig/network
例如:
NETWORKING=yes HOSTNAME=master vi /etc/hosts
填入以下内容
127.0.0.1 localhost
配置ssh免密码互通
ssh-keygen -t rsa
# cat?~/.ssh/id_rsa.pub?>>?~/.ssh/authorized_keys
配置core-site.xml文件(位于${HADOOP_HOME}/etc/hadoop/
<configuration> <property> <name>fs.defaultFS</name> <value>hdfs://localhost:9000</value> </property> </configuration>
配置hdfs-site.xml文件
<configuration> <property> <name>dfs.replication</name> <value>1</value> </property> </configuration>
下面的命令可以在单机伪分布模式下运行mapreduce的job
1.Format the filesystem:
$ bin/hdfs namenode -format
2.Start NameNode daemon and DataNode daemon:
$ sbin/start-dfs.sh
3.The hadoop daemon log output is written to the $HADOOP_LOG_DIR directory (defaults to $HADOOP_HOME/logs).4.Browse the web interface for the NameNode; by default it is available at:
NameNode - http://localhost:50070/
Make the HDFS directories required to execute MapReduce jobs:
$ bin/hdfs dfs -mkdir /user
$ bin/hdfs dfs -mkdir /user/<username>
5.Copy the input files into the distributed filesystem:
$ bin/hdfs dfs -put etc/hadoop input
6.Run some of the examples provided:
$ bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.5.2.jar grep input output 'dfs[a-z.]+'
7.Examine the output files:
Copy the output files from the distributed filesystem to the local filesystem and examine them:$ bin/hdfs dfs -get output output
$ cat output/*
orView the output files on the distributed filesystem:
$ bin/hdfs dfs -cat output/*
8.When you're done, stop the daemons with:
$ sbin/stop-dfs.sh
以上就是本文关于hadoop的wordcount实例代码的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。