这篇文章主要介绍“怎么用GPU编写Hello World”的相关知识,小编通过实际案例向大家展示操作过程,操作方法简单快捷,实用性强,希望这篇“怎么用GPU编写Hello World”文章能帮助大家解决问题。
在GPU编程中,有三种函数的声明:
Executed on | Only callable from | |
---|---|---|
__global__ void KernelFunc() | device | host |
__device__ float DeviceFunc() | device | device |
__host__ float HostFunt() | host | host |
这里的host
端就是指CPU,device
端就是指GPU;使用__global__
声明的核函数是在CPU端调用,在GPU里执行;__device__
声明的函数调用和执行都在GPU中;__host__
声明的函数调用和执行都在CPU端。
在讲GPU并行计算之前,我们先讲一下使用GPU后能提高性能的理论值,即Amdahld定理,也就是相对串行程序而言,并行程序的加速率。
假设程序中可并行代码的比例为p
,并行处理器数目是n
,程序并行化后的加速率为:
Hello World
程序是我们学习任何编程语言时,第一个要完成的,虽然cuda c并不是一门新的语言,但我们还是从Hello World
开始Cuda编程。
#include <stdio.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
__global__ void hello_world(void)
{
printf("GPU: Hello world! Thread id : %d\n", threadIdx.x);
}
int main(){
printf("CPU: Hello world!\n");
hello_world <<<1, 10>>>();
// cudaDeviceReset must be called before exiting in order for profiling and
// tracing tools such as Nsight and Visual Profiler to show complete traces.
cudaDeviceReset();
return 0;
}
程序中的具体语法我们后面会讲到,这里只要记住<<<1, 10>>>
是调用了10个线程即可,执行上面的程序,会打印出10个GPU的Hello World
,这个就是SIMD,即单指令多线程,多个线程执行相同的指令,就像程序中的这个10个线程同时执行打印Hello Wolrd
的这个指令一样。
关于“怎么用GPU编写Hello World”的内容就介绍到这里了,感谢大家的阅读。如果想了解更多行业相关的知识,可以关注亿速云行业资讯频道,小编每天都会为大家更新不同的知识点。
免责声明:本站发布的内容(图片、视频和文字)以原创、转载和分享为主,文章观点不代表本网站立场,如果涉及侵权请联系站长邮箱:is@yisu.com进行举报,并提供相关证据,一经查实,将立刻删除涉嫌侵权内容。